## One-step methods for retarded differential equations with parameters.(English)Zbl 0689.65053

The numerical solution of delay differential equations with parameters is considered. More precisely, the problem under consideration is to seek a real function y(t) defined on an interval $$[a,b]=I$$ and the value of a parameter $$\lambda$$, such that they satisfy the differential equation: $$y'(t)=f(t,y(t),y(\alpha (t)),6l),$$ $$t\in I$$, and the boundary conditions $$y(t)=g(t),$$ $$t\leq a$$, $$M\lambda +Ny(b)=K.$$ Assuming that the problem has a unique solution, a one-step iterative method is proposed and under some conditions, it is proved that it converges to the true solution. Several examples are used to check numerically the convergence of the above method.
Reviewer: M.Calvo

### MSC:

 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34K10 Boundary value problems for functional-differential equations
Full Text:

### References:

 [1] R. Conti: Problemes lineaires pour les équations différentialles ordinaires, Math. Nachr.23 (1961), 161–178. · Zbl 0107.28803 [2] J. W. Daniel and R. E. Moore: Computation and theory in ordinary differential equations, San Francisco 1970. · Zbl 0207.08802 [3] A. Feldstein and R. Goodman: Numerical solution of ordinary and retarded differential equations with discontinuous derivatives, Numer. Math.21 (1973), 1–13. · Zbl 0266.65056 [4] A. Gasparini and A. Mangini: Sul calcolo numerico delle soluzioni di un noto problema ai limiti per léquazioney’={$$\lambda$$}f(x,y), Le Matematiche22 (1965), 101–121. · Zbl 0137.33203 [5] A. Goma: The method of successive approximations in a two-point boundary value problem with a parameter (Russian), Ukrain. Mat. Z.29 (1977), 800–807. · Zbl 0368.34026 [6] R. Goodman and A. Feldstein: Round-off error for retarded ordinary differential equations: A priori bounds and estimates, Numer. Math.21 (1973), 355–372. · Zbl 0257.65068 [7] P. Henrici: Discrete variable methods in ordinary differential equations, John Wiley, New York 1962. · Zbl 0112.34901 [8] K. Jankowska and T. Jankowski: On a boundary-value problem of a differential equation with a deviated argument (Polish), Zeszyty Naukowe Politechniki Gdańskiej, Matematyka7 (1973), 33–48. · Zbl 0315.34085 [9] T. Jankowski: Boundary value problems with a parameter of differential equations with deviated arguments, Math. Nachr.125 (1986), 7–28. · Zbl 0587.34049 [10] T. Jankòwski: Convergence of multistep methods for systems of ordinary differential equations with parameters, Aplikace Mat.32 (1987), 257–270. [11] T. Jankowski: One-step methods for ordinary differential equations with parameters (sent to Aplikace Mat.). · Zbl 0701.65053 [12] T. Jankowski and M. Kwapisz: On the existence and uniqueness of solutions of boundary value problem for differential equations with parameter, Math. Nachr.71 (1976), 237–247. · Zbl 0384.34046 [13] H. Keller: Numerical solution of two-point boundary value problems Society for Industrial and Applied Mathematics, Philadelphia24 (1976). [14] A. V. Kibenko and A. I. Perov: A two-point boundary value problem with parameter (Russian), Azerbaidžan. Gos. Univ. Učen. Zap. Ser. Fiz.-Mat. i Him. Nauk3 (1961), 21–30. [15] J. Lambert: Computational methods in ordinary differential equations, London 1973. · Zbl 0258.65069 [16] R. Pasquali: Un procedimento di calcolo connesso ad un noto problema ai limiti per l’equazionex’=f(t, x, {$$\lambda$$}), Le Matematiche23 (1968), 319–328. · Zbl 0182.22003 [17] T. Pomentale: A boundary-value problem for the equationy’={$$\lambda$$}f(x, y)+h(x, y)(x, y)y, ZAMM54 (1974), 723–728. · Zbl 0293.34040 [18] T. Pomentale: A constructive theorem of existence and uniqueness for the problemy’=f(x, y, {$$\lambda$$}), y(a)={$$\alpha$$}, y(b)={$$\beta$$}, ZAMM56 (1976), 387–388. · Zbl 0338.34019 [19] Z. B. Seidov: A multipoint boundary value problem with a parameter for systems of differential equations in Banach space (Russian), Sibirski Math. Z.9 (1968), 223–228. [20] J. Stoer and R. Bulirsch: Introduction to numerical analysis, New York, Heidelberg, Berlin 1980. · Zbl 0423.65002 [21] H. J. Stetter: Analysis of discretization methods for ordinary differential equations, New York, Heidelberg, Berlin 1973. · Zbl 0276.65001 [22] L. Tavernini: One-step methods for the numerical solutions of Volterra functional differential equations, SIAM J. Numer. Anal.8 (1971), 786–795. · Zbl 0231.65070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.