×

Highly parallel particle-laden flow solver for turbulence research. (English) Zbl 1391.76224

Summary: In this paper, we present a Highly Parallel Particle-laden flow Solver for Turbulence Research (HiPPSTR). HiPPSTR is designed to perform three-dimensional direct numerical simulations of homogeneous turbulent flows using a pseudospectral algorithm with Lagrangian tracking of inertial point and/or fluid particles with one-way coupling on massively parallel architectures, and is the most general and efficient multiphase flow solver of its kind. We discuss the governing equations, parallelization strategies, time integration techniques, and interpolation methods used by HiPPSTR. By quantifying the errors in the numerical solution, we obtain optimal parameters for a given domain size and Reynolds number, and thereby achieve good parallel scaling on \(\mathcal O(10^4)\) processors.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M28 Particle methods and lattice-gas methods

Software:

P3DFFT; SPRNG; FFTW; ESSL
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Falkovich, G.; Fouxon, A.; Stepanov, M. G., Acceleration of rain initiation by cloud turbulence, Nature, 419, 151-154, (2002)
[2] Shaw, R. A., Particle-turbulence interactions in atmospheric clouds, Annu Rev Fluid Mech, 35, 183-227, (2003) · Zbl 1125.76401
[3] Warhaft, Z., Laboratory studies of droplets in turbulence: towards understanding the formation of clouds, Fluid Dyn Res, 41, (2009), 011201-+ · Zbl 1281.76038
[4] Malkiel, E.; Abras, J. N.; Widder, E. A.; Katz, J., On the spatial distribution and nearest neighbor distance between particles in the water column determined from in situ holographic measurements, J Plankton Res, 28, 2, 149-170, (2006)
[5] Cuzzi, J. N.; Hogan, R. C., Blowing in the wind I. velocities of chondrule-sized particles in a turbulent protoplanetary nebula, Icarus, 164, 127-138, (2003)
[6] Cuzzi, J. N.; Davis, S. S.; Dobrovolskis, A. R., Blowing in the wind II. creation and redistribution of refractory inclusions in a turbulent protoplanetary nebula, Icarus, 166, 385-402, (2003)
[7] Faeth, G. M., Spray combustion phenomena, Int Combust Symp, 26, 1, 1593-1612, (1996)
[8] Li, W. I.; Perzl, M.; Heyder, J.; Langer, R.; Brain, J. D.; Englemeier, K. H., Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities, J Aerosol Sci, 27, 8, 1269-1286, (1996)
[9] Pratsinis, S. E.; Zhu, W.; Vemury, S., The role of gas mixing in flame synthesis of titania powders, Powder Tech, 86, 87-93, (1996)
[10] Moody, E. G.; Collins, L. R., Effect of mixing on nucleation and growth of titania particles, Aerosol Sci Tech, 37, 403-424, (2003)
[11] Balachandar, S.; Eaton, J. K., Turbulent dispersed multiphase flow, Annu Rev Fluid Mech, 42, 111-133, (2010) · Zbl 1345.76106
[12] Fede, P.; Simonin, O., Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles, Phys Fluids, 18, (2006), 045103-+
[13] Ray, B.; Collins, L. R., Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes turbulence with and without filtering, J Fluid Mech, 680, 488-510, (2011) · Zbl 1241.76298
[14] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys Fluids, 26, 883-889, (1983) · Zbl 0538.76031
[15] Brucker, K. A.; Isaza, J. C.; Vaithianathan, T.; Collins, L. R., Efficient algorithm for simulating homogeneous turbulent shear flow without remeshing, J Comput Phys, 225, 20-32, (2007) · Zbl 1201.76076
[16] Rogallo RS. Numerical experiments in homogeneous turbulence. Tech. Rep. 81315; NASA; 1981.
[17] Pope, S. B., Turbulent flows, (2000), Cambridge University Press New York · Zbl 0966.76002
[18] Orszag, S. A.; Patterson, G. S., Numerical simulation of turbulence, (1972), Springer-Verlag New York · Zbl 0227.76080
[19] Johnson, R. W., The handbook of fluid dynamics, (1998), CRC Press · Zbl 0978.76001
[20] Eswaran, V.; Pope, S. B., An examination of forcing in direct numerical simulations of turbulence, Comput Fluids, 16, 257-278, (1988) · Zbl 0662.76069
[21] Witkowska, A.; Brasseur, J. G.; JuvĂ©, D., Numerical study of noise from isotropic turbulence, J Comput Acoust, 5, 317-336, (1997) · Zbl 1360.76109
[22] Elghobashi, S. E.; Truesdell, G. C., On the two-way interaction between homogeneous turbulence and dispersed particles. i: turbulence modification, Phys Fluids A, 5, 1790-1801, (1993) · Zbl 0782.76087
[23] Sundaram, S.; Collins, L. R., A numerical study of the modulation of isotropic turbulence by suspended particles, J Fluid Mech, 379, 105-143, (1999) · Zbl 0938.76045
[24] Sundaram, S.; Collins, L. R., Collision statistics in an isotropic, particle-laden turbulent suspension I. direct numerical simulations, J Fluid Mech, 335, 75-109, (1997) · Zbl 0901.76089
[25] Reade, W. C.; Collins, L. R., Effect of preferential concentration on turbulent collision rates, Phys Fluids, 12, 2530-2540, (2000) · Zbl 1184.76446
[26] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipies in Fortran, (1999), Cambridge University Press Cambridge
[27] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer, 19, 209-286, (2010) · Zbl 1242.65109
[28] Balachandar, S.; Maxey, M. R., Methods for evaluating fluid velocities in spectral simulations of turbulence, J Comput Phys, 83, 96-125, (1989) · Zbl 0672.76057
[29] Berrut, J. P.; Trefethen, L. N., Barycentric Lagrange interpolation, Siam Rev, 46, 501-517, (2004) · Zbl 1061.65006
[30] Lekien, F.; Marsden, J., Tricubic interpolation in three dimensions, Int J Numer Methods Eng, 63, 3, 455-471, (2005) · Zbl 1140.76423
[31] van Hinsberg, M. A.T.; Thije Boonkkamp, J. H.M.; Toschi, F.; Clercx, H. J.H., On the efficiency and accuracy of interpolation methods for spectral codes, SIAM J Sci Comput, 34, 4, B479-B498, (2012) · Zbl 1250.65165
[32] Pekurovsky, D., P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions, SIAM J Sci Comput, 34, 4, C192-C209, (2012) · Zbl 1253.65205
[33] Frigo, M.; Johnson, S. G., The design and implementation of FFTW3, Proc IEEE, 93, 2, 216-231, (2005)
[34] Engineering and scientific subroutine library (ESSL) and parallel ESSL; 2012. <http://www-03.ibm.com/systems/software/essl/>.
[35] Mascagni, M.; Srinivasan, A., Algorithm 806: SPRNG: a scalable library for pseudorandom number generation, ACM Trans Math Softw, 26, 3, 436-461, (2000)
[36] Ireland PJ, Vaithianathan T, Collins LR. Massively parallel simulation of inertial particles in high-Reynolds-number turbulence. In: Seventh international conference on computational fluid dynamics; 2012. p. 1-9.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.