×

zbMATH — the first resource for mathematics

A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. (English) Zbl 1391.76370
Summary: A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the \(\mathrm P_{1}\) element approximation, resulting in a huge reduction of memory requirement compared with DG (\(\mathrm P_{2}\)). Also, three approaches – analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flow solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
76Nxx Compressible fluids and gas dynamics, general
Software:
METIS; TAPENADE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cockburn, B.; Hou, S.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, J Math Phys, 55, 545-581, (1990) · Zbl 0695.65066
[2] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional system, J Comput Phys, 141, 199-224, (1998) · Zbl 0920.65059
[3] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285, (1997) · Zbl 0902.76056
[4] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 2, 267-279, (1997) · Zbl 0871.76040
[5] Bassi, F.; Rebay, S., Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and \(\kappa\)-\(\omega\) turbulence model equations, Comput Fluids, 34, 4-5, 507-540, (2005) · Zbl 1138.76043
[6] Cockburn, B.; Shu, C., The local discontinuous Galerkin method for time-dependent convection-diffusion system, SIAM J Numer Anal, 35, 6, 2440-2463, (1998) · Zbl 0927.65118
[7] Peraire, J.; Persson, P. O., The compact discontinuous Galerkin method for elliptic problems, SIAM J Sci Comput, 30, 4, 1806-1824, (2008) · Zbl 1167.65436
[8] Bassi F, Rebay S. A high order discontinuous Galerkin method for compressible turbulent flow. In: Cockburn B, Karniadakis GE, Shu CW, editors. Discontinuous Galerkin methods, theory, computation, and applications. Lecture notes in computational science and engineering, vol. 11; 2000.
[9] Klaij, C. M.; van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J Comput Phys, 217, 2, 589-611, (2006) · Zbl 1099.76035
[10] Qiu, J.; Shu, C. W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J Sci Comput, 26, 3, 907-929, (2005) · Zbl 1077.65109
[11] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J Comput Phys, 193, 1, 115-135, (2004) · Zbl 1039.65068
[12] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, J Comput Phys, 34, 6, 642-663, (2005) · Zbl 1134.65358
[13] Luo, H.; Baum, J. D.; Löhner, R., A discontinuous Galerkin method using Taylor basis for compressible flows on arbitrary grids, J Comput Phys, 227, 20, 8875-8893, (2008) · Zbl 1391.76350
[14] Luo, H.; Luo, L.; Xu, K., A discontinuous Galerkin method based on a BGK scheme for the Navier-Stokes equations on arbitrary grids, Adv Appl Math Mech, 1, 3, 301-318, (2009)
[15] van Leer, B.; Nomura, S., Discontinuous Galerkin method for diffusion, AIAA Paper, 2005-5108, (2005)
[16] van Leer, B.; Lo, M., A discontinuous Galerkin method for diffusion based on recovery, AIAA Paper, 2007-4083, (2007)
[17] Krivodonova, L.; Berger, M., High-order accurate implementation of solid wall boundary conditions in curved geometries, J Comput Phys, 211, 2, 492-512, (2006) · Zbl 1138.76403
[18] Ainsworth, M., Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J Comput Phys, 198, 1, 106-130, (2004) · Zbl 1058.65103
[19] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J Numer Anal, 19, 4, 742-760, (1982) · Zbl 0482.65060
[20] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[21] Collis SS. Discontinuous Galerkin methods for turbulence simulation. In: Proceedings of the 2002 center for turbulence research summer program. Citeseer; 2002. p. 155-67.
[22] Hartmann, R., Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations, Int J Numer Methods Fluids, 51, 9-10, 1131-1156, (2006) · Zbl 1106.76041
[23] Hartmann R, Houston P. Symmetric interior penalty DG methods for the compressible Navier-Stokes equations II: goal-oriented a posteriori error estimation; 2005. · Zbl 1152.76429
[24] Oliver, T. A.; Fidkowski, K. J.; Darmofal, D. L., Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, (2006), Springer
[25] Klaij, C. M.; Van der Vegt, J. J.W.; Van der Ven, H., Pseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J Comput Phys, 219, 2, 622-643, (2006) · Zbl 1102.76035
[26] Persson, P. O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper, 112, 2006, (2006)
[27] Reed W, Hill T. Triangular mesh methods for the neutron transport equation. Los Alamos scientific laboratory report. LA-UR-73-479; 1973.
[28] Luo, H.; Xia, Y.; Spiegel, S.; Nourgaliev, R.; Jiang, Z., A reconstructed discontinuous Galerkin method based on a hierarchical WENO reconstruction for compressible flows on tetrahedral grids, J Comput Phys, 236, 477-492, (2013) · Zbl 1286.65125
[29] Dumbser, M.; Zanotti, O., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J Comput Phys, 227, 18, 8209-8253, (2008) · Zbl 1147.65075
[30] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput Fluids, 39, 1, 60-76, (2010) · Zbl 1242.76161
[31] Dumbser, M.; Zanotti, O., Very high order P_NP_M schemes on unstructured meshes for the resistive relativistic MHD equations, J Comput Phys, 228, 18, 6991-7006, (2009) · Zbl 1261.76028
[32] Balsara, D.; Altmann, C.; Munz, C.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J Comput Phys, 226, 1, 586-620, (2007) · Zbl 1124.65072
[33] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J Comput Phys, 229, 19, 6961-6978, (2010) · Zbl 1425.35138
[34] Luo, H.; Xia, Y.; Nourgaliev, R.; Cai, C., A class of reconstructed discontinuous Galerkin methods for the compressible flows on arbitrary grids, AIAA Paper, 2011-2199, (2011)
[35] Luo, H.; Luo, L.; Ali, A.; Nourgaliev, R.; Cai, C., A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids, Commun Comput Phys, 9, 2, 363-389, (2011) · Zbl 1364.76090
[36] Luo, H.; Xia, Y.; Li, S.; Nourgaliev, R., A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids, J Comput Phys, 231, 16, 5489-5503, (2012) · Zbl 1426.76288
[37] Xia, Y.; Frisbey, M.; Luo, H.; Nourgaliev, R., A WENO reconstruction-based discontinuous Galerkin method for compressible flows on hybrid grids, AIAA Paper, (2013), 2013-0516
[38] Zhang, L.; Wei, L.; He, L.; Deng, X.; Zhang, H., A class of hybrid DG/FV methods for conservation laws I: basic formulation and one-dimensional systems, J Comput Phys, 231, 4, 1081-1103, (2012) · Zbl 1242.65205
[39] Zhang, L. P.; Liu, W.; He, L. X.; Deng, X. G.; Zhang, H. X., A class of hybrid DG/FV methods for conservation laws II: two dimensional cases, J Comput Phys, 231, 4, 1104-1120, (2012) · Zbl 1242.65206
[40] Bassi F, Rebay S. GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Cockburn B, Karniadakis GE, Shu CW, editors. Discontinuous Galerkin methods, theory, computation, and applications. Lecture notes in computational science and engineering, vol. 11; 2000b. p. 197-208. · Zbl 0989.76040
[41] Rasetarinera, P.; Hussaini, M. Y., An efficient implicit discontinuous spectral Galerkin method, J Comput Phys, 172, 718-738, (2001) · Zbl 0986.65093
[42] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., \(p\)-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J Comput Phys, 207, 1, 92-113, (2005) · Zbl 1177.76194
[43] Yasue, K.; Furudate, M.; Ohnishi, N.; Sawada, K., Implicit discontinuous Galerkin method for RANS simulation utilizing pointwise relaxation algorithm, Commun Comput Phys, 7, 3, 510-533, (2010) · Zbl 1364.76101
[44] Crivellini, A.; Bassi, F., An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations, Comput Fluids, 50, 1, 81-93, (2011) · Zbl 1271.76164
[45] Xia, Y.; Luo, H.; Nourgaliev, R., An implicit method for a reconstructed discontinuous Galerkin method on tetrahedron grids, AIAA Paper, 2012-2834, (2012)
[46] Xia Y, Nourgaliev R. An implicit hermite WENO reconstruction-based discontinuous Galerkin method on tetrahedral grids. In: 7th international conference on computational fluid dynamics. ICCFD7-4205; 2012.
[47] Xia, Y.; Luo, H.; Nourgaliev, R., An implicit reconstructed discontinuous Galerkin method based on automatic differentiation for the Navier-Stokes equations on tetrahedron grids, AIAA Paper, (2013), 2013-0687
[48] Batten, P.; Leschziner, M. A.; Goldberg, U. C., Average-state Jacobians and implicit methods for compressible viscous and turbulent flows, J Comput Phys, 137, 1, 38-78, (1997) · Zbl 0901.76043
[49] Luo, H.; Luo, L.; Nourgaliev, R., A reconstructed discontinuous Galerkin method for the Euler equations on arbitrary grids, Commun Comput Phys, 12, 5, 1495-1519, (2012) · Zbl 1388.65124
[50] Luo H, Xia Y, Nourgaliev R. A class of reconstructed discontinuous Galerkin methods in computational fluid dynamics. In: International conference on mathematics and computational methods applied to nuclear science and engineering (M&C2011); 2011.
[51] Luo, H.; Baum, J. D.; Löhner, R., A fast, p-multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA Paper, 110, 2006, (2006)
[52] Luo, H.; Baum, J. D.; Löhner, R., A \(p\)-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J Comput Phys, 211, 2, 767-783, (2006) · Zbl 1138.76408
[53] Xu, Z.; Liu, Y.; Du, H.; Lin, G.; Shu, C. W., Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws, J Comput Phys, 230, 17, 6843-6865, (2011) · Zbl 1408.65065
[54] Luo, H.; Baum, J. D.; Löhner, R., A fast, p-multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA J, 46, 3, 635-652, (2008)
[55] Xia, Y.; Luo, H.; Spiegel, S.; Frisbey, M.; Nourgaliev, R. H., A parallel, implicit reconstructed discontinuous Galerkin method for the compressible flows on 3D arbitrary grids, AIAA Paper, 2013-3062, (2013)
[56] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 3, 856-869, (1986) · Zbl 0599.65018
[57] Cockburn B, Karniadakis G, Shu CW. The development of discontinuous Galerkin method. In: Cockburn B, Karniadakis G, Shu CW, editors. Discontinuous Galerkin methods, theory, computation, and applications. Lecture notes in computational science and engineering, vol. 11; 2000. p. 5-50. · Zbl 0989.76045
[58] Helenbrook, B. T.; Mavriplis, D.; Atkins, H. L., Analysis of p-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper, 2003-3989, (2003)
[59] Luo, H.; Baum, J. D.; Löhner, R., On the computation of steady-state compressible flows using a discontinuous Galerkin method, Int J Numer Methods Eng, 73, 5, 597-623, (2008) · Zbl 1159.76023
[60] Luo, H.; Baum, J. D.; Löhner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J Comput Phys, 146, 2, 664-690, (1998) · Zbl 0931.76045
[61] Luo H, Sharov D, Baum JD. On the computation of compressible turbulent flows on unstructured grids. AIAA Paper; 2000. 2000-926. · Zbl 1114.76335
[62] Wang, L.; Mavriplis, D. J., Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations, J Comput Phys, 225, 2, 1994-2015, (2007) · Zbl 1343.76022
[63] Erwin T, Anderson W, Kapadia S, Wang L. Three dimensional stabilized finite elements for compressible Navier-Stokes. AIAA Paper 2011;2011-3411.
[64] Hascoët L, Pascual V, et al. TAPENADE 2.1 user’s guide; 2004.
[65] Karypis G, Kumar V. Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0; 1995.
[66] Schmitt, V.; Charpin, F., Pressure distributions on the onera-m6-wing at transonic Mach numbers, Exp Data Base Comput Program Assess, B1-1, (1979)
[67] IIleim ER. CFD wing/pylon/finned store mutual interference wind tunnel experiment. AEDC-TSR-91-P4. Arnold Engineering Development Center, Arnold AFB; 1991.
[68] Hummel D. Study of the flow around sharp-edged slender delta wings with large angles of attack. NASA technical translation. NASA-TT-F-15107; 1973.
[69] Thomas, J.; Kris, S.; Anderson, W., Navier-Stokes computations of vortical flows over low-aspect-ratio wings, AIAA J, 28, 2, 205-212, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.