zbMATH — the first resource for mathematics

Nonparametric independence screening via favored smoothing bandwidth. (English) Zbl 1432.62093
Summary: We propose a flexible nonparametric regression method for ultrahigh-dimensional data. As a first step, we propose a fast screening method based on the favored smoothing bandwidth of the marginal local constant regression. Then, an iterative procedure is developed to recover both the important covariates and the regression function. Theoretically, we prove that the favored smoothing bandwidth based screening possesses the model selection consistency property. Simulation studies as well as real data analysis show the competitive performance of the new procedure.

62G08 Nonparametric regression and quantile regression
62H12 Estimation in multivariate analysis
62G20 Asymptotic properties of nonparametric inference
62-08 Computational methods for problems pertaining to statistics
Full Text: DOI
[1] Chang, J.; Tang, C. Y.; Wu, Y., Marginal empirical likelihood and sure independence feature screening, Ann. Statist., 41, 2123-2148, (2013) · Zbl 1277.62109
[2] Chang, J.; Tang, C. Y.; Wu, Y., Local independence feature screening for nonparametric and semiparametric models by marginal empirical likelihood, Ann. Statist., 44, 515-539, (2016) · Zbl 06579666
[3] Chiang, A. P.; Beck, J. S.; Yen, H.-J.; Tayeh, M. K.; Scheetz, T. E.; Swiderski, R.; Nishimura, D.; Braun, T. A.; Kim, K.-Y.; Huang, J.; Elbedour, K.; Carmi, R.; Slusarski, D. C.; Casavant, T. L.; Stone, E. M.; Sheffield, V. C., Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a bardetcbiedl syndrome gene (BBS11), Proc. Natl. Acad. Sci. USA, 103, 6287-6292, (2006)
[4] Fan, J.; Feng, Y.; Song, R., Nonparametric independence screening in sparse ultra-high-dimensional additive models, J. Amer. Statist. Assoc., 106, 544-557, (2011) · Zbl 1232.62064
[5] Fan, J.; Feng, Y.; Wu, Y., High-dimensional variable selection for Cox proportional hazards model, (Borrowing Strength: Theory Powering Applications-a Festschrift for Lawrence D. Brown, (2010), Institute of Mathematical Statistics), 70-86
[6] Fan, J.; Lv, J., Sure independence screening for ultrahigh dimensional feature space, J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 5, 849-911, (2008) · Zbl 1411.62187
[7] Fan, J.; Lv, J., A selective overview of variable selection in high dimensional feature space, Statist. Sinica, 20, 1, 101-148, (2010) · Zbl 1180.62080
[8] Fan, J.; Ma, Y.; Dai, W., Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models, J. Amer. Statist. Assoc., 109, 507, 1270-1284, (2014) · Zbl 1368.62095
[9] Fan, J.; Song, R., Sure independence screening in generalized linear models with NP-dimensionality, Ann. Statist., 38, 6, 3567-3604, (2010) · Zbl 1206.68157
[10] Hansen, B. E., Uniform convergence rates for kernel estimation with dependent data, Econometric Theory, 24, 03, 726-748, (2008) · Zbl 1284.62252
[11] Huang, J.; Horowitz, J.; Wei, F., Variable selection in nonparametric additive models, Ann. Statist., 38, 2282-2313, (2010) · Zbl 1202.62051
[12] Irizarry, R. A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y. D.; Antonellis, K. J.; Scherf, U.; Speed, T. P., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics (Oxford), 4, 2, 249-264, (2003) · Zbl 1141.62348
[13] Li, K.-C., Sliced inverse regression for dimension reduction, J. Amer. Statist. Assoc., 86, 414, 316-327, (1991) · Zbl 0742.62044
[14] Li, G.; Peng, H.; Zhang, J.; Zhu, L., Robust rank correlation based screening, Ann. Statist., 40, 3, 1846-1877, (2012) · Zbl 1257.62067
[15] Li, R.; Zhong, W.; Zhu, L., Feature screening via distance correlation learning, J. Amer. Statist. Assoc., 107, 499, 1129-1139, (2012) · Zbl 1443.62184
[16] Liu, J.; Li, R.; Wu, R., Feature selection for varying coefficient models with ultrahigh-dimensional covariates, J. Amer. Statist. Assoc., 109, 505, 266-274, (2014) · Zbl 1367.62048
[17] Mai, Q.; Zou, H., The Kolmogorov filter for variable screening in high-dimensional binary classification, Biometrika, 229-234, (2012) · Zbl 06286930
[18] Meier, L.; Van de Geer, S.; Bühlmann, P., High-dimensional additive modeling, Ann. Statist., 37, 6B, 3779-3821, (2009) · Zbl 1360.62186
[19] Nadaraya, E. A., On estimating regression, Theory Probab. Appl., 9, 1, 141-142, (1964) · Zbl 0136.40902
[20] Scheetz, T. E.; Kim, K.-Y. A.; Swiderski, R. E.; Philp1, A. R.; Braun, T. A.; Knudtson, K. L.; Dorrance, A. M.; DiBona, G. F.; Huang, J.; Casavant, T. L.; Sheffield, V. C.; Stone, E. M., Regulation of gene expression in the Mammalian eye and its relevance to eye disease, Proc. Natl. Acad. Sci., 103, 14429-14434, (2006)
[21] Stefanski, L. A.; Wu, Y.; White, K., Variable selection in nonparametric classification via measurement error model selection likelihoods, J. Amer. Statist. Assoc., 109, 574-589, (2014) · Zbl 1367.62219
[22] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267-288, (1996) · Zbl 0850.62538
[23] Van Der Vaart, A. W.; Wellner, J. A., Weak Convergence, (1996), Springer
[24] Watson, G. S., Smooth regression analysis, Sankhyā: Indian J. Statist. Ser. A (1961-2002), 26, 4, 359-372, (1964) · Zbl 0137.13002
[25] White, K.; Wu, Y.; Stefanski, L., Variable selection in kernel regression using measurement error selection likelihoods, J. Amer. Statist. Assoc., (2017), (in press), doi: https://doi.org/10.1080/01621459.2016.1222287
[26] Wu, Y.; Stefanski, L. A., Automatic structure recovery for additive models, Biometrika, 102, 381-395, (2015) · Zbl 06450873
[27] Zhang, C., Calibrating the degrees of freedom for automatic data smoothing and effective curve checking, J. Amer. Statist. Assoc., 98, 463, 609-628, (2003) · Zbl 1040.62027
[28] Zhao, P.; Yu, B., On model selection consistency of lasso, J. Mach. Learn. Res., 7, 2541-2563, (2006) · Zbl 1222.62008
[29] Zhu, L.-P.; Li, L.; Li, R.; Zhu, L.-X., Model-free feature screening for ultrahigh-dimensional data, J. Amer. Statist. Assoc., 106, 1464-1475, (2011) · Zbl 1233.62195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.