×

zbMATH — the first resource for mathematics

Enhanced ensemble-based 4DVar scheme for data assimilation. (English) Zbl 06893440
Summary: Ensemble based optimal control schemes combine the components of ensemble Kalman filters and variational data assimilation (4DVar). They are trendy because they are easier to implement than 4DVar. In this paper, we evaluate a modified version of an ensemble based optimal control strategy for image data assimilation. This modified method is assessed with a shallow water model combined with synthetic data and original incomplete experimental depth sensor observations. This paper shows that the modified ensemble technique is better in quality and can reduce the computational cost.

MSC:
62-07 Data analysis (statistics) (MSC2010)
65C60 Computational problems in statistics (MSC2010)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Software:
TAPENADE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gordon, N.; Salmond, D.; Smith, A., Novel approach to non-linear/non-gaussian Bayesian state estimation, IEEE Process-F, 140, 2, 107-113, (1993)
[2] Cuzol, A.; Mémin, E., A stochastic filtering technique for fluid flow velocity fields tracking, IEEE Trans Pattern Anal Machine Intell, 31, 7, 1278-1293, (2009)
[3] Evensen, G., Sequential data assimilation with a non linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J Geophys Res, 99, C5 10, 143-162, (1994)
[4] Le Dimet, F.-X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38A, 97-110, (1986)
[5] Gronskis, A.; Heitz, D.; Mémin, E., Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation, J Comput Phys, 242, 6, 480-497, (2013) · Zbl 1299.76099
[6] Hamill, T. M.; Snyder, C., A hybrid ensemble Kalman filter-3D variational analysis scheme, Mon Wea Rev, 128, 8, 2905-2919, (2000)
[7] Lorenc, A. C., The potential of the ensemble Kalman filter for NWP — a comparison with 4D-var, Quart J Roy Meteor Soc, 129, 3183-3203, (2003)
[8] Buehner, M., Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting, Quart J Roy Meteor Soc, 131, 607, 1013-1043, (2005)
[9] Fertig, E. J.; Harlim, J.; Hunt, B. R., A comparative study of 4D-VAR and a 4D ensemble Kalman filter: perfect model simulations with Lorenz-96, Tellus A, 59, 1, 96-100, (2007)
[10] Clayton, A. M.; Lorenc, A. C.; Barker, D. M., Operational implementation of a hybrid ensemble/4D-var global data assimilation system at the met office, Quart J Roy Meteor Soc, 139, 675, 1445-1461, (2012)
[11] Liu, C.; Xiao, Q.; Wang, B., An ensemble-based four-dimensional variational data assimilation scheme. part I: technical formulation and preliminary test, Mon Wea Rev, 136, 9, 3363-3373, (2008)
[12] Buehner, M.; Houtekamer, P. L.; Charette, C.; Mitchell, H. L.; He, B., Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. part I: description and single-observation experiments, Mon Wea Rev, 138, 5, 1550-1566, (2010)
[13] Li, Z.; Navon, M., Optimality of 4D-var and its relationship with the Kalman filter and Kalman smoother, Quart J Roy Meteor Soc, 127, 572, 661-684, (2001)
[14] Courtier, P.; Thépaut, J.-N.; Hollingsworth, A., A strategy for operational implementation of 4D-var, using an incremental approach, Quart J Roy Meteor Soc, 120, 519, 1367-1387, (1994)
[15] Weaver, A. T.; Vialard, J.; Anderson, D. L.T., Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. part I: formulation, internal diagnostics, and consistency checks, Mon Wea Rev, 131, 1360-1378, (2003)
[16] Haben, S. A.; Lawless, A. S.; Nichols, N. K., Conditioning and preconditioning of the variational data assimilation problem, Comput Fluids, 46, 1, 252-256, (2011) · Zbl 1433.86007
[17] El Akkraoui, A.; Trémolet, Y.; Todling, R., Preconditioning of variational data assimilation and the use of a bi-conjugate gradient method, Quart J Roy Meteor Soc, 139, 672, 731-741, (2012)
[18] Gaspari, G.; Cohn, S. E., Construction of correlation functions in two and three dimensions, Quart J Roy Meteor Soc, 125, 554, 723-757, (1999)
[19] Desroziers, G.; Camino, J.-T.; Berre, L., 4denvar: link with 4D state formulation of variational assimilation and different possible implementations, Quart J Roy Meteor Soc, 140, 2097?2110, (2014)
[20] Ott, E.; Hunt, B. R.; Szunyogh, I.; Zimin, A. V.; Kostelich, M. C.E. J.; Kalnay, E., A local ensemble Kalman filter for atmospheric data assimilation, Tellus A, 56A, 415-428, (2004)
[21] Liu, C.; Xiao, Q.; Wang, B., An ensemble-based four-dimensional variational data assimilation scheme. part II: observing system simulation experiments with advanced research WRF (ARW), Mon Wea Rev, 137, 5, 1687-1704, (2009)
[22] Bocquet, M.; Sakov, P., An iterative ensemble Kalman smoother, Quart J Roy Meteor Soc, 140, 682, 1521-1535, (2013)
[23] Bradford, S. F.; Sanders, B. F., Finite-volume model for shallow-water flooding of arbitrary topography, J Hydraul Eng, 128, 289-298, (2002)
[24] Hascoët, L.; Pascual, V., The tapenade automatic differentiation tool: principles, model, and specification, ACM Trans Math Softw, 39, 3, (2013) · Zbl 1295.65026
[25] Dee, D. P., Bias and data assimilation, Quart J Roy Meteor Soc, 131, 613, 3323-3343, (2005)
[26] Combès B, Guibert A, Mémin E, Heitz D. Free-surface flows from kinect: feasibility and limits. In: FVR2011 - forum on recent developments in volume reconstruction techniques applied to 3D fluid and solid mechanics. Univ. Poitiers, Futuroscope Chasseneuil, France; 2011.
[27] Combes B, Heitz D, Guibert A, Mémin M. A particle filter to reconstruct a free-surface flow from a depth camera. Fluid dynamics research minor revision; 1993.
[28] Steward, J. L.; Navon, I. M.; Zupanski, M.; Karmitsa, N., Impact of non-smooth observation operators on variational and sequential data assimilation for a limited-area shallow-water equation model, Quart J Roy Meteor Soc, 138, 663, 323-339, (2011)
[29] Steward JL, Navon IM, Zupanski M, Karmitsa N. Compressed file implementing code for the paper “Impact of non-smooth observation operators on variational and sequential data assimilation for a limited-area shallow-water equation model” in QJRMS; 2014.
[30] Mémin, E., Fluid flow dynamics under location uncertainty, Geophys Astrophys Fluid Dyn, 108, 2, 119-146, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.