×

zbMATH — the first resource for mathematics

Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows. (English) Zbl 1390.76833
Summary: In this work, we investigate the use of linearly implicit Rosenbrock-type Runge-Kutta schemes to integrate in time high-order discontinuous Galerkin space discretizations of the Navier-Stokes equations. The final goal of this activity is the application of such schemes to the high-order accurate, both in space and time, simulation of turbulent flows. Besides being able to overcome the severe time step restriction of explicit schemes, Rosenbrock schemes have the attractive feature of requiring just one Jacobian matrix evaluation per time step, thus reducing the overall computational effort. Several high-order (up to sixth order) Rosenbrock schemes available in the literature have been implemented and evaluated on benchmark test cases of both compressible and incompressible flows. For the sake of completeness, the sets of coefficients of the schemes here considered have been reported in an appendix to the paper. An implementation of Rosenbrock schemes for systems of equations with a solution dependent block diagonal matrix multiplying the time derivative is here proposed and described in detail. This can occur, for example, if sets of working variables different from the conservative ones are used in the compressible Navier-Stokes equations. In particular, we have found useful to employ primitive variables based on the logarithms of pressure and temperature in order to ensure the positivity of all thermodynamic variables at the discrete level. The best performing Rosenbrock scheme resulting from our analysis has then been applied to the implicit large eddy simulation of the transitional flow around the Selig-Donovan SD7003 airfoil.

MSC:
76R10 Free convection
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Software:
MEBDF; RODAS; ROS3P
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chapelier, J.-B.; de la Llave Plata, M.; Renac, F.; Lamballais, E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Comput Fluids, 95, 0, 210-226, (2014) · Zbl 1391.76209
[2] Carton de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Int J Numer Methods Fluids, 74, 7, 469-493, (2014)
[3] Wei, L.; Pollard, A., Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method, Comput Fluids, 47, 1, 85-100, (2011) · Zbl 1271.76142
[4] van der Bos, F.; Geurts, B. J., Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence, Comput Methods Appl Mech Eng, 199, 1316, 903-915, (2010) · Zbl 1406.76039
[5] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int J Numer Methods Eng, 87, 1-5, 232-261, (2011) · Zbl 1242.76085
[6] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Nigro, A., Time integration in the discontinuous Galerkin code MIGALE - unsteady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, (2015), Springer International Publishing), 205-230
[7] Spalart P, Jou W, Strelets M, Allmaras S. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: International conference on DNS/LES, August 4-8, 1997, Ruston, Louisiana; 1997. p. 137-47.
[8] Strelets, M., Detached eddy simulation of massively separated flows, (2001), American Institute of Aeronautics and Astronautics
[9] Kok JC, Dol HS, Oskam B, van der Ven H. Extra-large eddy simulation of massively separated flows. AIAA paper 2004-264; 2004.
[10] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C.-D., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J Comput Phys, 230, 11, 4232-4247, (2011), [special issue High Order Methods for CFD Problems] · Zbl 1220.65122
[11] Hindenlang, F.; Gassner, G.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[12] Persson, P.-O., High-order LES simulations using implicit-explicit Runge-Kutta schemes, (2011), American Institute of Aeronautics and Astronautics
[13] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equation, Proc. Natl. Acad. Sci. USA, 235-243, (1952) · Zbl 0046.13602
[14] Kennedy CA, Carpenter MH. Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Technical Memorandum TM-2001-211038, NASA; July 2001.
[15] Carpenter, M. H.; Kennedy, C. A.; Bijl, H.; Viken, S. A.; Vatsa, V. N., Fourth-order runge—kutta schemes for fluid mechanics applications, J Sci Comput, 25, 1, 157-194, (2005) · Zbl 1203.76112
[16] Cash, J. R., On the integration of stiff systems of ODEs using extended backward differentiation formulae, Numer Math, 34, 235-246, (1980) · Zbl 0411.65040
[17] Cash, J. R., The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae, Comput Math Appl, 5, 9, 645-657, (1983) · Zbl 0526.65052
[18] Nigro, A.; Ghidoni, A.; Rebay, S.; Bassi, F., Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows, Int J Numer Methods Fluids, 76, 9, 549-574, (2014)
[19] Psihoyios, G.-Y.; Cash, J., A stability result for general linear methods with characteristic function having real poles only, BIT Numer Math, 38, 3, 612-617, (1998) · Zbl 0915.65095
[20] Nigro, A.; De Bartolo, C.; Bassi, F.; Ghidoni, A., Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier-Stokes equations, J Comput Phys, 276, 0, 136-162, (2014) · Zbl 1349.76247
[21] Hairer, E.; Wanner, G., Solving ordinary differential equations II, Stiff and differential-algebraic problems, (2002), Springer Verlag
[22] Bassi F, Colombo A, De Bartolo C, Franchina N, Ghidoni A, Nigro A. Investigation of high-order temporal schemes for the discontinuous Galerkin solution of the Navier-Stokes equations. In: 11th World congress on computational mechanics, WCCM 2014, 5th European conference on computational mechanics, ECCM 2014 and 6th European conference on computational fluid dynamics, ECFD 2014; 2014. p. 5651-62.
[23] Iannelli GS, Baker AJ. A stiffly-stable implicit Runge-Kutta algorithm for CFD applications, AIAA Paper 88-0416, AIAA; 1988.
[24] Lang, J.; Verwer, J., ROS3P—an accurate third-order rosenbrock solver designed for parabolic problems, BIT, 41, 4, 731-738, (2001) · Zbl 0996.65099
[25] Hairer, E.; Wanner, G., Solving ordinary differential equations II, stiff and differential-algebraic problems, (Computational mathematics, (1996), Springer) · Zbl 0859.65067
[26] Steinebach G. Order-reduction of ROW-methods for DAEs and method of lines applications. Preprint-Nr. 1741, FB Mathematik, TH Darmstadt; 1995.
[27] Di Marzo G. RODAS5(4) - Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques. MSc mathematics thesis, Faculty of Science, University of Geneva, Switzerland.
[28] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes in FORTRAN; the art of scientific computing, (1993), Cambridge University Press New York (NY, USA)
[29] Kaps, P.; Wanner, G., A study of rosenbrock-type methods of high order, Numer Math, 38, 279-298, (1981) · Zbl 0469.65047
[30] Zhou Y, Wang ZJ. Implicit large eddy simulation of transitional flow over a SD7003 wing using high-order spectral difference method. AIAA Paper 2010-4442; 2010.
[31] Castonguay P, Liang C, Jameson A. Simulation of transitional flow over airfoils using the spectral difference method. AIAA Paper 2010-4626; 2010.
[32] Carton de Wiart C, Hillewaert K. DNS and ILES of transitional flows around a SD7003 using a high order discontinuous Galerkin method. In: Seventh international conference on computational fluid dynamics (ICCFD7) ICCFD7-3604; 2012.
[33] Garmann DJ, Visbal MR. C3.3: implicit large eddy-simulations of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering. In: 2nd International workshop on high-order CFD methods, Cologne (Germany); 2013. <http://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/2013_05-hiocfd/contrib/C33_Garmann.pdf>.
[34] Boom PD, Zingg DW. Time-accurate flow simulations using an efficient Newton-Krylov-Schur approach with high-order temporal and spatial discretization. AIAA Paper 2012-0383; 2013.
[35] Bolemann, T.; Beck, A.; Flad, D.; Frank, H.; Mayer, V.; Munz, C.-D., High-order discontinuous Galerkin schemes for large-eddy simulations of moderate Reynolds number flows, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, (2015), Springer International Publishing), 435-456
[36] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Decuypere, R.; Dibelius, G., Proceedings of the 2nd European conference on turbomachinery fluid dynamics and thermodynamics, (1997), Technologisch Instituut Antwerpen (Belgium)), 99-108
[37] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J Comput Phys, 218, 794-815, (2006) · Zbl 1158.76313
[38] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (Discontinuous Galerkin methods, theory, computation and applications, Lecture notes in computational science and engineering, vol, (2000), Springer Newport (RI, USA)), 77-88, (First International Symposium on Discontinuous Galerkin Methods, May 24-26, 1999) · Zbl 0991.76039
[39] Dolejší, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun Comput Phys, 4, 231-274, (2008) · Zbl 1364.76085
[40] Gassner, G. J.; Lörcher, F.; Munz, C.-D., A discontinuous Galerkin scheme based on a space-time expansion - II. viscous flow equations in multi dimensions, J Sci Comput, 34, 260-286, (2008) · Zbl 1218.76027
[41] Botti, L., Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces, J Sci Comput, 52, 3, 675-703, (2012) · Zbl 1255.65222
[42] Tesini P. An h-multigrid approach for high-order discontinuous Galerkin methods. Ph.D. Thesis, University of Bergamo, Bergamo (Italy); January 2008.
[43] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D. A.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J Comput Phys, 231, 1, 45-65, (2012) · Zbl 1457.65178
[44] Di Pietro, D. A.; Ern, A., Mathematical aspects of discontinuous Galerkin methods, Mathématiques et applications, vol. 69, (2012), Springer Verlag · Zbl 1231.65209
[45] Choi, Y.-H.; Merkle, C. L., The application of preconditioning in viscous flows, J Comput Phys, 105, 2, 207-223, (1993) · Zbl 0768.76032
[46] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J, 33, 11, 2050-2057, (1995) · Zbl 0849.76072
[47] Bassi, F.; De Bartolo, C.; Hartmann, R.; Nigro, A., A discontinuous Galerkin method for inviscid low Mach number flows, J Comput Phys, 228, 11, 3996-4011, (2009) · Zbl 1273.76265
[48] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer Meth Part Diff Eq, 16, 365-378, (2000) · Zbl 0957.65099
[49] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[50] Gottlieb, J. J.; Groth, C. P.T., Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases, J Comput Phys, 78, 437-458, (1988) · Zbl 0657.76064
[51] Hänel D, Schwane R, Seider G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations. AIAA Paper 87-1105; 1987.
[52] Crivellini, A.; D’Alessandro, V.; Bassi, F., A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, J Comput Phys, 241, 388-415, (2013) · Zbl 1349.76194
[53] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput Fluids, 36, 1529-1546, (2007) · Zbl 1194.76102
[54] Balay S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, et al. PETSc Web page; 2014.
[55] Iannelli GS, Baker AJ. A stiffly-stable implicit Runge-Kutta algorithm for CFD applications. AIAA Paper 88-0416; 1988.
[56] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J Comput Phys, 150, 1, 97-127, (1999) · Zbl 0926.65090
[57] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A., High-order CFD methods: current status and perspective, Int J Numer Methods Fluids, 72, 8, 811-845, (2013)
[58] IDIHOM, Industrialization of High-Order Methods - A Top-Down Approach. Specific targeted research project supported by European commission. <http://www.dlr.de/as/en/desktopdefault.aspx/tabid-7027/11654_read-27492/>.
[59] Chiocchia G. Exact solutions to transonic and superesonic flows. Tech. rep. AGARD-AR-211, Center for Aerospace Information, NASA; 1985.
[60] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285, (1997) · Zbl 0902.76056
[61] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; De Bartolo, C.; Franchina, N., Time integration in the discontinuous Galerkin code MIGALE - steady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, (2015), Springer International Publishing), 179-204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.