zbMATH — the first resource for mathematics

Using DC PSE operator discretization in Eulerian meshless collocation methods improves their robustness in complex geometries. (English) Zbl 1390.76645
Summary: Many fluid-dynamics applications require solutions in complex geometries. In these cases, mesh generation can be a difficult and computationally expensive task for mesh-based methods. This is alleviated in meshless methods by relaxing the neighborhood relations between nodes. Meshless methods, however, often face issues computing numerically robust local operators, especially for the irregular node configurations required to effectively resolve complex geometries. Here, we address this issue by using discretization-corrected particle strength exchange (DC PSE) operator discretization in a strong-form Eulerian collocation meshless solver. We use the solver to compute steady-state solutions of incompressible, laminar flow problems in standard benchmarks and multiple complex-geometry problems in 2D with a velocity-correction method in the Eulerian framework. We verify that the solver produces stable and accurate results across all benchmark problems. We find that DC PSE operator discretization is more robust to varying node configurations than moving least squares (MLS). In addition, we find that in more challenging complex geometries, the solver using MLS operator discretization fails to converge, whereas DC PSE operators provide robust solutions without node adjustment.

76M22 Spectral methods applied to problems in fluid mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Mfree2D; PPM; Unicorn
Full Text: DOI
[1] Arefmanesh, A.; Najafi, M.; Abdi, H., Meshless local Petrov-Galerkin method with unity test function for non-isothermal fluid flow, CMES-Comput Model Eng Sci, 25, 9-25, (2008) · Zbl 1232.76024
[2] Armaly, B. F.; Durst, F.; Pereira, J. C.F.; Schonung, B., Experimental and theoretical investigation of backward-facing step flow, J Fluid Mech, 172, 473-496, (1983)
[3] Atluri S.N., Shen S.P. The Meshless Local Petrov-Galerkin (MLPG) method. Encino, USA: Tech Science Press; 2002. · Zbl 1012.65116
[4] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[5] Atluri, S. N.; Zhu, T. L., A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation., Comput Model Simul Eng, 3, 3, 187-196, (1998)
[6] Awile, O.; Mitrović, M.; Reboux, S.; Sbalzarini, I. F., A domain-specific programming language for particle simulations on distributed-memory parallel computers, Proc. III Intl. Conference on Particle-based Methods (PARTICLES). Stuttgart, Germany, p52, (2013)
[7] Babuska, I.; Melenk, J. M., The partition of unity method, Int J Numer Methods Eng, 40, 727-758, (1997) · Zbl 0949.65117
[8] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075
[9] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[10] Bourantas, G. C.; Loukopoulos, V. C., A meshless scheme for incompressible fluid flow using a velocity-pressure correction method, Comput Fluids, 88, 189-199, (2013) · Zbl 1391.76095
[11] Bourantas, G. C.; Petsi, A. J.; Skouras, E. D.; Burganos, V. N., Meshless point collocation for the numerical solution of Navier-Stokes flow equations inside an evaporating sessile droplet, Eng Anal Boundary Elem, 36, 240-247, (2012) · Zbl 1245.76015
[12] Bourantas, G. C.; Skouras, E. D.; Loukopoulos, V. C.; Nikiforidis, G. C., Meshfree point collocation schemes for 2D steady state incompressible Navier-Stokes equations in velocity-vorticity formulation for high values of Reynolds number, CMES-Comput Model Eng Sci, 59, 31-63, (2010) · Zbl 1231.76069
[13] Bourantas, G. C.; Skouras, E. D.; Loukopoulos, V. C.; Nikiforidis, V. C., Numerical solution of non-isothermal fluid flows using local radial basis functions (LRBF) interpolation and a velocity-correction method, CMES-Comput Model Eng Sci, 64, 187-212, (2010) · Zbl 1231.76070
[14] Bourantas, G. C.; Skouras, E. D.; Nikiforidis, G. C., Adaptive support domain implementation on the moving least squares approximation for mfree methods applied on elliptic and parabolic PDE problems using strong-form description, CMES-Comput Model Eng Sci, 43, 1-25, (2009) · Zbl 1232.65153
[15] Broomhead, D. S.; Lowe, D., Radial basis functions, multi-variable functional interpolation and adaptive networks, Tech. Rep, (1988), DTIC Document · Zbl 0657.68085
[16] Cartwright, J. H.E.; Piro, O.; Tuval, I., Fluid dynamics in developmental biology: moving fluids that shape ontogeny, HFSP J, 3, 2, 77-93, (2009)
[17] Chung, T., Computational fluid dynamics, (2010), Cambridge University Press NY USA · Zbl 1218.76001
[18] Cottet, G.-H.; Koumoutsakos, P., Vortex methods - theory and practice, (2000), Cambridge University Press New York
[19] Degond, P.; Mas-Gallic, S., The weighted particle method for convection-diffusion equations. part 1: the case of an isotropic viscosity, Math Comput, 53, 188, 485-507, (1989) · Zbl 0676.65121
[20] Degond, P.; Mas-Gallic, S., The weighted particle method for convection-diffusion equations. part 2: the anisotropic case, Math Comput, 53, 188, 509-525, (1989) · Zbl 0676.65122
[21] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput Methods Appl Mech Eng, 139, 237-262, (1996) · Zbl 0918.73328
[22] El Zahab, Z.; Divo, E.; Kassab, A. J., A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics, Eng Anal Boundary Elem, 33, 8, 1045-1061, (2009) · Zbl 1244.76073
[23] Eldredge, J. D.; Leonard, A.; Colonius, T., A general deterministic treatment of derivatives in particle methods, J Comput Phys, 180, 2, 686-709, (2002) · Zbl 1143.76550
[24] Erturk, E.; Corke, T. C.; Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int J Numer Methods Fluids, 48, 7, 747-774, (2005) · Zbl 1071.76038
[25] Gartling, D. K., A test problem for outflow boundary conditions - flow over a backward-facing step, Int J Numer Methods Fluids, 11, 953-967, (1990)
[26] Gazzola, M.; Chatelain, P.; Van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J Comput Phys, 230, 19, 7093-7114, (2011) · Zbl 1328.76085
[27] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 3, 387-411, (1982) · Zbl 0511.76031
[28] Gingold, R. A.; Monaghan, J. J., Kernel estimates as a basis for general particle methods in hydrodynamics, J Comput Phys, 46, 429-453, (1982) · Zbl 0487.76010
[29] Hoffman, J.; Jansson, J.; de Abreu, R. V.; Degirmenci, N. C.; Jansson, N.; Müller, K., Unicorn: parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry, Comput Fluids, 80, 310-319, (2013) · Zbl 1284.76223
[30] Howard, J.; Grill, S. W.; Bois, J. S., Turing’s next steps: the mechanochemical basis of morphogenesis, Nat Rev Mol Cell Biol, 12, 392-398, (2011)
[31] Jin, X.; Li, G.; Aluru, N. R., Positivity conditions in meshless collocation methods, Comput Methods Appl Mech Eng, 193, 1171-1202, (2004) · Zbl 1060.74667
[32] Jülicher, F.; Kruse, K.; Prost, J.; Joanny, J.-F., Active behavior of the cytoskeleton, Phys Rep, 449, 3-28, (2007)
[33] Kennett, D. J.; Timme, S.; Angulo, J.; Badcock, K. J., An implicit meshless method for application in computational fluid dynamics, Int J Numer Meth Fluids, 71, 1007-1028, (2013)
[34] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 308-323, (1985) · Zbl 0582.76038
[35] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 155, 141-158, (1981) · Zbl 0469.41005
[36] Lapenta, G.; Iinoya, F.; Brackbill, J. U., Particle-in-cell simulation of glow discharges in complex geometries, IEEE Trans Plasma Sci, 23, 4, 769-779, (1995)
[37] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl Mecha Rev, 55, 1, 1-34, (2002)
[38] Li, S.; Liu, W. K., Meshfree particle methods, (2004), Springer · Zbl 1073.65002
[39] Lin, H.; Atluri, S. N., The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equation, CMES-Comput Model Eng Sci, 2, 117-142, (2001)
[40] Liu, G., Mesh free methods, moving beyond the finite elements method, (2002), CRC Press
[41] Liu, G.-R., Meshfree methods: moving beyond the finite element method, (2009), Taylor & Francis
[42] Liu, W. K.; Chen, Y.; Uras, R. A.; Chang, C. T., Generalized multiple scale reproducing kernel particle methods, Comput Methods Appl Mech Eng, 139, 1, 91-157, (1996) · Zbl 0896.76069
[43] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 8-9, 1081-1106, (1995) · Zbl 0881.76072
[44] Loukopoulos, V. C.; Bourantas, G. C., MLPG6 for the solution of incompressible flow equations, CMES-Comput Model Eng Sci, 88, 531-558, (2012) · Zbl 1356.76059
[45] Lucy, L. B., A numerical approach to the testing the fission hypothesis, Astron J, 82, 1013-1024, (1977)
[46] Mahesh, K.; Constantinescu, G.; Moin, P., A numerical method for large-eddy simulation in complex geometries, J Comput Phys, 197, 1, 215-240, (2004) · Zbl 1059.76033
[47] Mai-Duy, N.; Mai-Cao, L.; Tran-Cong, T., Computation of transient viscous flows using indirect radial basis function networks, CMES-Comput Model Eng Sci, 18, 59-78, (2007)
[48] Mohammadi, M. H., Stabilized meshless local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows, CMES-Comput Model Eng Sci, 29, 75-94, (2008) · Zbl 1232.76028
[49] Moin, P.; Apte, S. V., Large-eddy simulation of realistic gas turbine combustors, AIAA J, 44, 4, 698-708, (2006)
[50] Morinishi, K., An upwind finite difference scheme for meshless solvers, J Comput Phys, 189, 1-23, (2003)
[51] Mramor, K.; Vertnik, R.; Sarler, B., Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method, CMES-Comput Model Eng Sci, 92, 327-352, (2013) · Zbl 1356.76441
[52] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[53] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 3, 763-813, (2008) · Zbl 1152.74055
[54] Onate, E.; Idelsohn, S.; Zienkiewicz, O.; Taylor, R., A finite point method in computational mechanics. applications to convective transport and fluid flow, Int J Numer Methods Eng, 39, 3839-3866, (1996) · Zbl 0884.76068
[55] Ramaswamy, R.; Bourantas, G.; Jülicher, F.; Sbalzarini, I. F., A hybrid particle-mesh method for incompressible active polar viscous gels, J Comput Phys, 291, 334-361, (2015) · Zbl 1349.76524
[56] Reboux, S.; Schrader, B.; Sbalzarini, I. F., A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations, J Comput Phys, 231, 9, 3623-3646, (2012) · Zbl 1402.65130
[57] Sbalzarini, I. F.; Walther, J. H.; Bergdorf, M.; Hieber, S. E.; Kotsalis, E. M.; Koumoutsakos, P., PPM - a highly efficient parallel particle-mesh library for the simulation of continuum systems, J Comput Phys, 215, 2, 566-588, (2006) · Zbl 1173.76398
[58] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv Comput Math, 3, 251-264, (1995) · Zbl 0861.65007
[59] Schrader, B., Discretization-corrected PSE operators for adaptive multiresolution particle methods, (2011), Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19566, 2011, Ph.D. thesis
[60] Schrader, B.; Reboux, S.; Sbalzarini, I. F., Discretization correction of general integral PSE operators for particle methods, J Comput Phys, 229, 4159-4182, (2010) · Zbl 1334.65196
[61] Schrader, B.; Reboux, S.; Sbalzarini, I. F., Choosing the best kernel: performance models for diffusion operators in particle methods, SIAM J Sci Comput, 34, 3, A1607-A1634, (2012) · Zbl 1246.15010
[62] Sellountos, E. J.; Sequeira, A., An advanced meshless LBIE/RBF method for solving two-dimensional incompressible fluid flows, Comput Mech, 92, 327-352, (2008) · Zbl 1162.76373
[63] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM National Conference, 517-524, (1968), ACM
[64] Sohn, J., Evaluation of fidap on some classical laminar and turbulent, Int J Numer Methods Fluids, 8, 149-1490, (1988)
[65] Sridar, D.; Balakrishnan, N., An implicit gridless type solver for the Navier-Stokes equations on unstructured meshes, CFD J, 9, 1, (2009)
[66] Triantafyllou, M. S.; Triantafyllou, G. S.; Yue, D. K.P., Hydrodynamics of fishlike swimming, Annu Rev Fluid Mech, 32, 1, 33-53, (2000) · Zbl 0988.76102
[67] Wang, Y.-M.; Chen, S.-M.; Wu, C.-P., A meshless collocation method based on the differential reproducing kernel interpolation, Comput Mech, 45, 6, 585-606, (2010) · Zbl 1398.74479
[68] Wu, Y. L.; Liu, G. R.; Gu, Y. T., Application of meshless local Petrov-Galerkin (MLPG) approach to simulation of incompressible flow, Numer Heat Transf, Part B, 48, 459-475, (2005)
[69] Zhu, T.; Zhang, J. D.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput Mech, 22, 117-127, (1998) · Zbl 0920.76054
[70] Zienkiewicz, O. C.; Taylor, R. L.; Nithiarasu, P., The finite element method for fluid dynamics, (2005), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.