zbMATH — the first resource for mathematics

Uncertainty quantification in littoral erosion. (English) Zbl 1390.86020
Summary: We aim at quantifying the impact of flow state uncertainties in littoral erosion to provide confidence bounds on deterministic predictions of bottom morphodynamics. Two constructions of the bathymetry standard deviation are discussed. The first construction involves directional quantile-based extreme scenarios using what is known on the flow state probability density function (PDF) from on site observations. We compare this construction to a second cumulative one using the gradient by adjoint of a functional involving the energy of the system. These ingredients are illustrated for two models for the interaction between a soft bed and a flow in a shallow domain. Our aim is to keep the computational complexity comparable to the deterministic simulations taking advantage of what already available in our simulation toolbox.
86A05 Hydrology, hydrography, oceanography
76M35 Stochastic analysis applied to problems in fluid mechanics
86-08 Computational methods for problems pertaining to geophysics
Full Text: DOI
[1] AIAA, Guide for the verification and validation of computational fluid dynamics simulations, AIAA, G-077, 1-10, (1998)
[2] Audusse, E.; Bristeau, M., A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes., JCP, 206, 311-333, (2005) · Zbl 1087.76072
[3] Bouharguane, A.; Mohammadi, B., Optimal dynamics of soft shapes in shallow waters, Comput Fluids, 40/1, 291-298, (2011) · Zbl 1245.76013
[4] Bouharguane, A.; Mohammadi, B., Minimization principles for the evolution of a soft sea bed interacting with a shallow sea, IJCFD, 26/3, 163-172, (2012)
[5] Bunch, J. R.; Kaufman, L., Some stable methods for calculating inertia and solving symmetric linear systems, Math Comput, 31, 137, 163-179, (1997) · Zbl 0355.65023
[6] Caers, J., Modeling uncertainty in the Earth sciences, (2011), Wiley-Blackwell · Zbl 1329.86001
[7] Casella, G.; Berger, R., Statistical inference, 2nd ed., (2001), Duxbury Press, London
[8] Courrieu, P., Fast computation of Moore-Penrose inverse matrices, CoRR, abs/0804.4809, (2008)
[9] Dauvergne, B.; Hascoët, L., The data-flow equations of checkpointing in reverse automatic differentiation, Lecture notes in computer science Vol. 3994, proceedings ICCS 2006, 566-573, (2006), Springer Reading, UK · Zbl 1157.65334
[10] Dunckel, M.; Hasselmann, D. E; Ewing, J. A, Directional wave spectra observed during jonswap 1973., J Phys Oceanogr, 10/8, 1264-1280, (1980)
[11] Dean, R.; Dalrymple, R. A., Water wave mechanics for engineers and scientists, (1991), World Scientific Publishing
[12] Dean, R.; Dalrymple, R. A., Coastal processes with engineering applications, (2004), Cambridge University Press
[13] Dronkers, J., Dynamics of coastal systems, Adv. Ser. Ocean Eng., 25, (2005), World Scientific Publishing, Singapore
[14] Bouharguane, A., Low complexity shape optimization and a posteriori high fidelity validation., Disc Cont Dyn Syst B, 13, 759-772, (2010) · Zbl 1330.86003
[15] Audusse, E., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J Sci Comp, 25/6, 2050-2065, (2004) · Zbl 1133.65308
[16] Evensen, G., Sequential data assimilation for nonlinear dynamics: the ensemble Kalman filter in Ocean forecasting: conceptual basis and applications, (2002), Springer-Verlag, Heidelberg
[17] Fabrie, P.; Marche, F.; Bonneton, Ph.; Seguin, N., Evaluation of well-ballanced bore-capturing schemes for 2D wetting and drying processes, IJNMF, 53/5, 867-894, (2007) · Zbl 1229.76063
[18] Fowler, A., Dunes and drumlins, (Balmforth, N.; Provenzale, A., Geomorphological fluid mechanics, (2001), Springer, Berlin), 430-454 · Zbl 1169.86305
[19] Ghanem, R.; Doostan, A., On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data,, J Comput Phys, 217, 63-81, (2006) · Zbl 1102.65004
[20] Ghanem, R.; Spanos, P., Stochastic finite elements: a spectral approach, (1991), Springer Verlag, New York · Zbl 0722.73080
[21] Giles, M., Multilevel Monte Carlo methods, Acta Numerica, 24, 259-328, (2015) · Zbl 1316.65010
[22] Gras A.. Sediment transport by waves and currents. SERC London Cent. Mar. Techno, Report No: FL29(1981).
[23] Griewank, A., Computational derivatives, (2001), Springer New York
[24] Hascoet, L.; Pascual, V., Tapenade user’s guide, INRIA Technical report, 1-31, (2004), INRIA
[25] Hascoët, L.; Pascual, V., The tapenade automatic differentiation tool: principles, model, and specification, ACM Trans Math Software, 39, 3, (2013), 20:1-20:43 · Zbl 1295.65026
[26] Hudson, J.; Sweby, P., Formulations for numerically approximating hyperbolic systems governing sediment transport, J Sci Comput, 19, 225-252, (2003) · Zbl 1081.76572
[27] Azerad, P.; Bouchette, F.; Isebe, D.; Mohammadi, B., Optimal shape design of coastal structures minimizing short waves impact, Coastal Eng, 55/1, 1262-1277, (2008) · Zbl 1159.74394
[28] Azerad, P.; Bouchette, F.; Isebe, D.; Mohammadi, B., Shape optimization of geotextile tubes for sandy beach protection, IJNME, 74, 1262-1277, (2008) · Zbl 1159.74394
[29] Ivorra, B.; Mohammadi, B., Optimization strategies in credit portfolio management, J Global Optim, 43/2, 415-427, (2009) · Zbl 1169.90452
[30] Jorion, P., Value at risk: the new benchmark for managing financial risk, (2006), McGraw-Hill, New York
[31] Ghil, M.; Ide, K.; Courtier, P.; Lorenc, A., Unified notation for data assimilation: operational, sequential and variational, J Meteorolog Soc Jpn, 75/1B, 181-189, (1997)
[32] Kalman, R., A new approach to linear filtering and prediction problems, Trans ASME J Basic Eng, 82, 35-45, (1960)
[33] Kapur, K.; Lamberson, L., Reliability in engineering design, (1997), John Wiley & Sons, New York
[34] Kouakou, K.; Lagree., P.-Y., Evolution of a model dune in a shear flow, Eur J Mech B Fluids, 25/3, 348-359, (2006) · Zbl 1130.76337
[35] Lindsten, F.; Schȵn, T. B., Backward simulation methods for Monte Carlo statistical inference, Mach Learn, 6, 111-143, (2013)
[36] Marche, F.; Bonneton, P., A simple and efficient well-balanced scheme for 2d bore propagation and run-up over a sloping beach, Proceedings of int. conf. coast. eng. ICCE, 143-152, (2006), Springer
[37] Mei, C., The applied dynamics of Ocean surface waves, (1989), World Scientific Publishing · Zbl 0991.76003
[38] Mishra, S.; Schwab, C.; Sukys, J., Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions, SIAM J. Sci. Comput., 34, 6, B761-B784, (2012) · Zbl 1263.76045
[39] Mohammadi, B., Reduced sampling and incomplete sensitivity for low-complexity robust parametric optimization, Int J Num Meth Fluids, 73/4, 307-323, (2013)
[40] Mohammadi, B., Principal angles between subspaces and reduced order modeling accuracy in optimization., Struct Multidiscip Optim, 50/2, 237-252, (2014)
[41] Mohammadi, B., Uncertainty quantification by geometric characterization of sensitivity spaces, Compt Meth Appl Mech Eng, 280, 197-221, (2014) · Zbl 1425.65058
[42] Mohammadi, B., Value at risk for confidence level quantifications in robust engineering optimization., Optim Control, 35/2, 179-190, (2014) · Zbl 1290.49067
[43] Mohammadi, B., Ensemble Kalman filters (enkf) and geometric characterization of sensitivity spaces for uncertainty quantification in optimization, Comput Methods Appl Mech Eng, 290, 228-249, (2015) · Zbl 1423.90163
[44] Mohammadi, B., Parallel reverse time integration and reduced order models for efficient adjoint lattice Boltzmann methods., SMAI J Comput Math, 1, 5-28, (2015) · Zbl 1416.65391
[45] Mohammadi, B.; Bouchette, F., Extreme scenarios for the evolution of a soft bed interacting with a fluid using the value at risk of the bed characteristics, Comput Fluids, 89, 78-87, (2014)
[46] Mohammadi, B.; Pironneau, O., Applied shape optimization for fluids (2nd edition), (2009), Oxford Univ. Press Oxford
[47] Mohammadi, B.; Pironneau, O., Shape optimization in fluid mechanics, Annu Rev Fluid Mech, 36/1, 255-279, (2004) · Zbl 1076.76020
[48] Desilva, G. S.; Kobayashi, N.; Watson, K. D., Wave transformation and swash oscillation on gentle and steep slopes., J Geophys Res, 94, 951-966, (1989)
[49] Nielsen, P., Coastal and estuarine processes, (2002), World Scientific Publishing, Singapore
[50] Paola, C.; Voller, V. R., A generalized exner equation for sediment mass balance, J Geophys Res, 110, 1-8, (2005)
[51] Gallouet, T.; Eymard, R.; Herbin, R., Finite volume methods, Handbook of numerical analysis, VII, (2000), North Holland, Amsterdam · Zbl 0843.65068
[52] Redont, P.; Mohammadi, B., Improving the identification of general Pareto fronts by global optimization, CRAS, 347, 1-8, (2009) · Zbl 1157.93005
[53] Soulsby, R., Calculating bottom orbital velocity beneath waves, Coastal Eng, 11/4, 371-380, (1987)
[54] Tarantola, A., Inverse problem theory and methods for model parameter estimation, (1987), SIAM N.Y. · Zbl 0875.65001
[55] Valiani, A.; Caleffi, V.; Bernini, A., High-order balanced cweno scheme for movable bed shallow water equations, Adv Water Resour, 30, 730-741, (2007)
[56] Wan, X.; Karniadakis, G., Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J Sci Comput, 28/3, 901-928, (2006) · Zbl 1128.65009
[57] Wasserman, L., All of statistics: a concise course in statistical inference, (2004), Springer · Zbl 1053.62005
[58] Xiu, D., Numerical methods for stochastic computations: a spectral method approach, (2010), Princeton University Press · Zbl 1210.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.