A physics based multiscale modeling of cavitating flows. (English) Zbl 1390.76873

Summary: Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a discrete singularities model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.


76T10 Liquid-gas two-phase flows, bubbly flows
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI


[1] Hammitt, F. G., Cavitation and multiphase flow phenomena, (1980), McGraw-Hill New York
[2] Brennen, C. E., Hydrodynamics of pumps, (1994), Concepts NREC and Oxford University Press
[3] Chahine, G. L.; Kalumuck, K. M.; Frederick, G. S., Cavitating water jets for deep hole drilling in hard rock, (Proceedings, 8th American water jet conference, (1995), Houston, TX)
[4] Kalumuck, K. M.; Chahine, G. L., The use of cavitating jets to oxidize organic compounds in water, ASME J Fluid Eng, 122, 465-470, (2000)
[5] Chahine, G.L. and Kalumuck, K.M, Swirling fluid jet cavitation method and system for efficient decontamination of liquids, US Patent No 6,200,486, assigned to D{\scynaflow} I{\scnc}, 2000.
[6] Chahine, G.L. and Kalumuck, K.M, Fluid jet cavitation method and system for efficient decontamination of liquids, US Patent No 6,221,260, assigned to D{\scynaflow} I{\scnc}, 2001.
[7] Kalumuck, K.M., Chahine, G.L., Choi, J.K., Hsiao, C.-T., Aley, P.D., Frederick, G.S. Development of cavitating liquid jets for oxidation remediation of contaminated aquifiers, D{\scynaflow} I{\scnc}., Technical Report 2M2022-NIEHS-1, December, 2003.
[8] Powers, M., Five star nanoemulsions enable neutraceuticals as first commercial platform, NanoBiotech News, 3, 1, (2005)
[9] Beggs, D. H.; Brill, J. P., A study of two-phase flow in inclined pipes, J Petrol Technol, 25, 5, 607-617, (May 1973)
[10] Chahine, G. L.; Franc, J. P.; Karimi, A., Part 1: cavitation and cavitation erosion : computational and experimental approaches, (Kim, K. H.; Chahine, G. L.; Franc, J. P.; Karimi, A., Advanced experimental and numerical techniques for cavitation erosion prediction, (2013), Springer), (to appear)
[11] Hsiao, C. T.; Wu, X.; Ma, J.; Chahine, G. L., Numerical and experimental study of bubble entrainment due to a horizontal plunging jet, Int Shipbuild Progr, 60, 1, 435-469, (2013)
[12] Chahine, G. L.; Duraiswami, R., Dynamical interaction in a multi-bubble cloud, J Fluids Eng, 114, 4, 680-686, (1992)
[13] Chahine, G. L., Strong interactions bubble/bubble and bubble/flow, (Blake, J. R.; Boulton-Stone, J. M.; Thomas, N. H., Bubble dynamics and interface phenomena, (1994), Kluwer Academic Dordrecht), 195
[14] Chahine, G. L.; Franc, J. P.; Karimi, A., Advanced experimental and numerical techniques for cavitation erosion prediction - part ii, (Kim, K. H.; Chahine, G. L.; Franc, J. P.; Karimi, A., (2013), Springer), (to appear)
[15] Chahine, G.L., Kalumuck, K.M., Tanguay, M., Galambos, J.P., Rayleigh, M., Miller, R.D. et al., Development of a non-explosive ship shock testing system SBIR phase I final report, D{\scynaflow}, I{\scnc}., Technical Report 2M3030-1 DTRC, 2004.
[16] Chahine, G. L.; Bovis, A. G., Pressure field generated by non-spherical bubble collapse, J Fluids Eng, 105, 3, 356-364, (1983)
[17] Prosperetti, A.; Oguz, H. N., Physalis: a new O(N) method for the numerical simulation of disperse systems: potential flow of sphere, J Comput Phys, 167, 196-216, (2001) · Zbl 0988.76072
[18] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 169, 463-502, (1999) · Zbl 0957.76052
[19] Tryggvason, G; Bunner, B; Esmaeeli, A; Juric, D; Al-Rawahi, N; Tauber, W, A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 2, 708-759, (2001) · Zbl 1047.76574
[20] Osher, S.; Fedkiw, R. P., Level set methods, an overview and some recent results, J Comput Phys, 169, 463-502, (2001) · Zbl 0988.65093
[21] Fedkiw, R. P.; Sapiro, G.; Shu, C. W., Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher’s contributions, J Comput Phys, 185, 309-341, (2003) · Zbl 1026.68147
[22] Tryggvason, Gretar; Thomas, Siju; Lu, Jiacai; Aboulhasanzadeh, Bahman, Multiscale issues in DNS of multiphase flows, Acta Math Sci, 30, 2, 551-562, (2010) · Zbl 1228.76183
[23] Esmaeeli, A.; Tryggvason, G., Direct numerical simulations of bubbly flows. part 1. low Reynolds number array, J Fluid Mech, 377, 313-345, (1998) · Zbl 0934.76090
[24] Oweis, G.; van der Hout, I.; Iyer, C.; Tryggvason, G.; Ceccio, S., Capture and inception of bubbles near line vortices, Phys Fluids, 17, (2005) · Zbl 1187.76394
[25] Lu, J.; Biswas, S.; Tryggvason, G, A DNS study of laminar bubbly flows in a vertical channel, Int J Multiph Flow, 32, 643-660, (2006) · Zbl 1136.76567
[26] Seo, J. H; Lele, S. K.; Tryggvason, G, Investigation and modeling of bubble-bubble interaction effect in homogeneous bubbly flows, Phys Fluids, 22, (2010) · Zbl 1190.76112
[27] Lahey, RichardT., On the direct numerical simulation of two-phase flows, Nucl Eng Des, 239, 5, 867-879, (2009)
[28] Bolotnov, I. A.; Lahey, R. T.; Drew, D. A.; Jansen, K. E.; Oberai, A. A., Spectral analysis of turbulence based on the DNS of a channel flow, Comput Fluids, 39, 640-655, (2010) · Zbl 1242.76072
[29] Rodriguez, JosephM; Sahni, Onkar; Lahey, RichardT; Jansen, KennethE, A parallel adaptive mesh method for the numerical simulation of multiphase flows, Comput Fluids, 87, 15-131, (2013)
[30] Xiong, Qingang; Li, Bo; Xu, Ji, GPU-accelerated adaptive particle splitting and merging in SPH, Comput Phys Commun, 184, 1701-1707, (2013)
[31] Ma, Jingsen; Ge, Wei; Xiong, Qingang; Wang, Junwu; Li, Jinghai, Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method, Chem Eng Sci, 64, 1, 43-51, (2009)
[32] Xiong, Qingang; Li, Bo; Chen, Feiguo; Ma, Jingsen; Ge, Wei; Li, Jinghai, Direct numerical simulation of sub-grid structures in gas-solid flow—GPU implementation of macro-scale pseudo-particle modeling, Chem Eng Sci, 65, 19, 5356-5365, (2010)
[33] Quan, Shaoping; Lou, Jing; Schmidt, DavidP., Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations, J Comput Phys, 228, 7, 2660-2675, (2009) · Zbl 1275.76174
[34] Choi, Jin-Keun, and Georges L Chahine. Numerical Study on the Behavior of Air Layers Used for Drag Reduction. · Zbl 1186.76105
[35] Zhang, D. Z.; Prosperetti, A., Averaged equations for inviscid disperse two-phase flow, J Fluid Mech, 267, 185, (1994) · Zbl 0820.76090
[36] Zhang, D. Z.; Prosperetti, A., Ensemble phase-averaged equations for bubbly flows, Phys Fluids, 6, 2956-2970, (1994) · Zbl 0836.76094
[37] Ma, Jingsen; Oberai, AssadA; Hyman, MarkC; Drew, DonaldA; Lahey, RichardT, Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model, Comput Fluids, 52, 50-57, (2011) · Zbl 1271.76344
[38] Xiang, M; Cheung, SCP; Tu, JY; Zhang, WH, Numerical research on drag reduction by ventilated partial cavity based on two-fluid model, Ocean Eng, 38, 17, 2023-2032, (2011)
[39] Biesheuvel, A.; van Wijngaarden, L., Two-phase flow equations for a dilute dispersion of gas bubble in liquid, J Fluid Mech, 148, 301-318, (1984) · Zbl 0585.76153
[40] Kubota, A.; Hiroharu, K.; Yamaguchi, H., A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section, J Fluid Mech, 240, 59-96, (1992)
[41] Delale, C. F.; Schnerr, G. H.; Sauer, J., Quasi-one-dimensional steady-state cavitating nozzle flows, J Fluid Mech, 427, 167-204, (2001) · Zbl 1031.76051
[42] Hinch, E. J., An averaged-equation approach to particle interactions in a fluid suspension, J Fluid Mech, 83, 695, (1977) · Zbl 0374.76038
[43] Nigmatulin, R. I., Spatial averaging in the mechanics of heterogeneous and disperse systems, Int J Multiph Flow, 5, 353-385, (1979) · Zbl 0427.73008
[44] Pauchon, C.; Smereka, P., Momentum interactions in dispersed flow: an averaging and a variational approach, Int J Multiph Flow, 18, 65-87, (1992) · Zbl 1144.76438
[45] Chen, Y.; Heister, S. D., Modeling hydrodynamic non-equilibrium in cavitating flows, J Fluids Eng, 118, 172-178, (1996)
[46] Atkin, R. J; Craine, R. E., Continuum theories of mixtures: basic theory and historical development, Q J Mech Appl Math, 29, 209-244, (1976) · Zbl 0339.76003
[47] Atkin, R. J; Craine, R. E., Continuum theories of mixtures: applications, J Inst Math Appl, 17, 153-207, (1976) · Zbl 0355.76004
[48] Bown, R. M., Theory of mixtures, Continuum physics, 3, (1971), Academic Press New York
[49] Rajagopal, K. R.; Tao, L., Mechanics of mixtures, (1995), World Scientific Singapore · Zbl 0941.74500
[50] Druzhinin, O. A.; Elghobashi, S., Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation, Phys Fluids, 10, 685-697, (1998)
[51] Druzhinin, O. A.; Elghobashi, S., A Lagrangian-Eulerian mapping solver for direct numerical simulation of bubble-laden turbulent shear flows using the two-fluid formulation, J Comput Phys, 154, 174-196, (1999) · Zbl 0949.76041
[52] Druzhinin, O. A.; Elghobashi, S., Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling, J Fluid Mech, 429, 23-62, (2001) · Zbl 1007.76087
[53] Elghobashi, S.; Truesdell, G. C., Direct simulation of particle dispersion in a decaying isotropic turbulence, J Fluid Mech, 242, 655-700, (1992)
[54] Elghobashi, S.; Truesdell, G. C., On the two-way interaction between homogeneous turbulence and dispersed solid particle. I: turbulence modification, Phys Fluids A: Fluid Dyn, 5, 1790-1801, (1993) · Zbl 0782.76087
[55] Ferrante, A.; Elghobashi, S., On the mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles, J Fluid Mech, 503, 345-355, (2004) · Zbl 1116.76368
[56] Xu, J.; Maxey, M. R.; Karniadakis, G. E., Numerical simulation of turbulent drag reduction using micro-bubbles, J Fluid Mech, 468, 271-281, (2002) · Zbl 1035.76052
[57] Hsiao, C.-T.; Chahine, G. L., Prediction of vortex cavitation inception using coupled spherical and non-spherical models and Navier-Stokes computations, J Mar Sci Technol, 8, 3, 99-108, (2003)
[58] Choi, J.-K.; Hsiao, C.-T.; Chahine, G. L., Tip vortex cavitation inception study using the surface averaged pressure (SAP) model combined with a bubble splitting model, (Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, NL, Canada, (Aug. 2004))
[59] Hsiao, C.-T.; Chahine, G. L.; Liu, H., Scaling effects on prediction of cavitation inception in a line vortex flow, J Fluid Eng, 125, 53-60, (2003)
[60] Hsiao, C.-T.; Jain, A.; Chahine, G. L., Effects of gas diffusion on bubble entrainment and dynamics around a propeller, (26th Symposium on Naval Hydrodynamics, Rome, Italy, (2006))
[61] Li, Jinghai; Ge, Wei; Wang, Wei; Yang, Ning, Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering, Particuology, 8, 6, 634-639, (2010)
[62] Li, Jinghai, Wenlai Huang, Peter P Edwards, Mooson Kwauk, John T Houghton, and Daniel Slocombe. 2013. On the Universality of Mesoscience: science of’the in-between’. arXiv preprint arXiv:1302.5861.
[63] Tomiyama, A.; Shimada, N., (N+2)-field modeling for bubbly flow simulation, Comput Fluid Dyn J, 9, 4, 418-426, (2001)
[64] Xiang, M.; Cheung, S. C.P.; Tu, J. Y.; Zhang, W. H., A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps, Ocean Eng, 91, 51-63, (2014)
[65] Yan, Kai; Che, Defu, A coupled model for simulation of the gas-liquid two-phase flow with complex flow patterns, Int J Multiph Flow, 36, 4, 333-348, (2010)
[66] Tomar, Gaurav; Fuster, Daniel; Zaleski, Stéphane; Popinet, Stéphane, Multiscale simulations of primary atomization, Comput Fluids, 39, 10, 1864-1874, (2010) · Zbl 1245.76148
[67] Hänsch, Susann; Lucas, Dirk; Krepper, Eckhard; Höhne, Thomas, A multi-field two-fluid concept for transitions between different scales of interfacial structures, Int J Multiph Flow, 47, 171-182, (2012)
[68] Ma, Jingsen; Oberai, AssadA; Lahey, RichardT; Drew, DonaldA, Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models, Heat Mass Transf, 47, 8, 911-919, (2011)
[69] Michael, ThadJefferson, Development and validation of a sharp interface cavitation model, (2013), Iowa University, PhD Thesis
[70] Hsiao, C.-T.; Chahine, G. L., Prediction of vortex cavitation inception using coupled spherical and non-spherical models and Navier-Stokes computations, J Mar Sci Technol, 8, 3, 99-108, (2003)
[71] Choi, J.; Hsiao, C.-T.; Chahine, G. L.; Ceccio, S., Growth, oscillation and collapse of vortex cavitation bubbles, J Fluid Mech, 624, 255, (2009) · Zbl 1171.76449
[72] Ma, J; Chahine, GL; Hsiao, C-T, Spherical bubble dynamics in a bubbly medium using an Euler-Lagrange model, Chem Eng Sci, 128, 64-81, (2015)
[73] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J Comput Phys, 2, 1, 12-26, (1967) · Zbl 0149.44802
[74] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 43, 357-372, (1981) · Zbl 0474.65066
[75] van Leer, B.; Woodward, P. R., The MUSCL code for compressible flow: philosophy and results, (Proceedings of the TICOM conference, Austin, TX, (1979))
[76] Vanden, K. J.; Whitfield, D. L., Direct and iterative algorithms for the three-dimensional Euler equations, AIAA J, 33, 5, 851-858, (1995) · Zbl 0869.76068
[77] Fedkiw, R. P., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 152, 2, 457-492, (1999) · Zbl 0957.76052
[78] Sussman, M., An improved level set method for incompressible two-phase flows, Comput Fluids, 27, 5, 663-680, (1998) · Zbl 0967.76078
[79] Carrica, P.; Wilson, R.; Stern, F., An unsteady single-phase level set method for viscous free surface flows, Int J Numer Methods Fluids, 53, 2, 229-256, (2007) · Zbl 1227.76049
[80] Saffman, P., The lift on a small sphere in a slow shear flow, J Fluid Mech, 22, 02, 385-400, (1965) · Zbl 0218.76043
[81] Singh, S.; Fourmeau; Choi, T.; Chahine, J.-K.; Thrust, G. L., Enhancement through bubble injection into an expanding-contracting nozzle with a throat, J Fluids Eng, 136, 7, (Jul. 2014)
[82] Choi, J.-K.; Wu, X.; Chahine, G. L.; Bubble, Augmented propulsion with a convergent-divergent nozzle, (30th symposium on naval hydrodynamics, Hobart, Tasmania, Australia, (November 2-7, 2014))
[83] Hsiao, C.-T.; Ma, J.; Chahine, G. L., Multiscale tow-phase flow modeling of sheet and cloud cavitation, (30th symposium on naval hydrodynamics, (2014), Hobart, Tasmania, Australia)
[84] Berntsen, G. S.; Kjeldsen, M.; Arndt, R. E., Numerical modeling of sheet and tip vortex cavitation with FLUENT 5, (Fourth international symposium on cavitation, Pasadena, CA: NTNU, (2001))
[85] Wu, X.; Chahine, G., Characterization of the content of the cavity behind a high-speed supercavitating body, ASME J Fluids Eng, 129, 136-145, (2007)
[86] Ma, J.; Hsiao, C.-T.; Chahine, G. L., Modeling separation and cavitation behind a blunt body, (ASME 2016 fluids engineering division summer meeting, Washington, DC, (2016)), July 10 - 14, 2016
[87] Shen, Y.; Dimotakis, P., The influence of surface cavitation on hydrodynamic forces, (22nd American towing tank conference,, (1989))
[88] Kim, S.; Schroeder, S., Numerical study of thrust-breakdown due to cavitation on a hydrofoil, a propeller, and a waterjet, (Proceedings of the 28th symposium on naval hydrodynamics, (2010))
[89] Kim, S.-E.; Brewton, S., A multiphase approach to turbulent cavitating flows, (Proceedings of 27th symposium on naval hydrodynamics, Seoul, Korea, (2008))
[90] Forero M 2010 An investigation on the hydrodynamic impact of treating propeller blade surface to resist cavitation erosion (NSWCCD-50-TR-2010/023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.