zbMATH — the first resource for mathematics

Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. (English) Zbl 1390.76447
Summary: The capability of a homogeneous model to simulate steady and unsteady two-phase flows is investigated. The latter is based on the Euler set of equations supplemented by a complex equation of state describing the thermodynamical behavior of the mixture. No equilibrium assumption is made except for the kinematic equilibrium. The return to the thermodynamical equilibrium is ensured by three source terms that comply with the second law of thermodynamics. The numerical code built on the basis of this model has been verified and some validation results are discussed here. The speed of propagation of a pressure signal is first studied and compared with experimental measurements. Then a more complex situation is investigated: SUPERCANON experiment which corresponds to a sudden depressurization of heated water (associated to a loss-of-coolant accident, or LOCA). At last, the results of a numerical experiment of heating of flowing water in a pipe are compared to those obtained with an industrial code.

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
80A20 Heat and mass transfer, heat flow (MSC2010)
THYC; Thetis
Full Text: DOI
[1] Kubo, R., Thermodynamics: an advanced course with problems and solutions, (1976), North-Holland Pub. Co.
[2] Barberon, T.; Helluy, P., Finite volume simulation of cavitating flows, Comput Fluids, 34, 7, 832-858, (2005) · Zbl 1134.76392
[3] Faccanoni, G.; Kokh, S.; Allaire, G., Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM: Math Model Numer Anal, 46, 5, 1029-1054, (2012) · Zbl 1267.76110
[4] Hurisse, O., Application of an homogeneous model to simulate the heating of two-phase flows, Int J Finite Vol, 11, 1-37, (2014)
[5] Jung, J., Numerical simulations of two-fluid flow on multicores accelerator, (2013), Université de Strasbourg, Theses
[6] Bdzil, J.; Menikoff, R.; Son, S.; Kapila, A.; Stewart, D., Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues, Phys Fluids, 11, 2, 378-402, (1999) · Zbl 1147.76317
[7] Berry, R. A.; Peterson, J. W.; Zhang, H.; Martineau, R. C.; Zhao, H.; Zou, L., Relap-7 theory manual, Technical Report INL/EXT-14-31366, (2014), Idaho National Laboratory
[8] Coquel, F.; Gallouët, T.; Helluy, P.; Hérard, J.-M.; Hurisse, O.; Seguin, N., Modelling compressible multiphase flows, Proceedings of ESAIM, 40, 34-50, (2013), EDP Sciences · Zbl 1329.76349
[9] Gallouët, T.; Hérard, J.-M.; Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math Models Methods Appl Sci, 14, 05, 663-700, (2004) · Zbl 1177.76428
[10] Jin, H.; Glimm, J.; Sharp, D., Compressible two-pressure two-phase flow models, Phys Lett A, 353, 6, 469-474, (2006) · Zbl 1236.76081
[11] Kapila, A.; Son, S.; Bdzil, J.; Menikoff, R.; Stewart, D., Two-phase modeling of DDT: structure of the velocity-relaxation zone, Phys Fluids, 9, 12, 3885-3897, (1997)
[12] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J Fluid Mech, 607, 313-350, (2008) · Zbl 1147.76060
[13] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int J Multiph Flow, 12, 6, 861-889, (1986) · Zbl 0609.76114
[14] Gavrilyuk, S.; Saurel, R., Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J Comput Phys, 175, 1, 326-360, (2002) · Zbl 1039.76067
[15] Bilicki, Z.; Kestin, J.; Pratt, M., The effect of three closures on critical conditions in two-phase flow with unequal phase velocities, Int J Multiph Flow, 14, 4, 507-517, (1988)
[16] Gale, J.; Tiselj, I., Water hammer in elastic pipes, Proceedings of international conference on nuclear energy for new Europe, Kranjska Gora, Slovenia, (2002)
[17] Streeter V., Wylie E.. Hydraulic transients1967.
[18] Baker, Q. A., Guidelines for vapor cloud explosion, pressure vessel burst, bleve, and flash fire hazards, (2010), Center for Chemical Process Safety
[19] Xie, M., Thermodynamic and gasdynamic aspects of a boiling liquid expanding vapour explosion, (2013), TU Delft, Delft University of Technology, Ph.D. thesis
[20] Lauterborn, W.; Bolle, H., Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary, J Fluid Mech, 72, 02, 391-399, (1975)
[21] Karplus H. The velocity of sound in a liquid containing gas bubbles. Armour Research Foundation Project No A-097, AEC Contract No AT (11-1)-5281958.
[22] Feldman, C.; Nydick, S.; Kokernak, R., The speed of sound in single component two phase fluids: theoretical and experimental, Proceedings of international symposium on two-phase systems, Haifa, Israel, Session, 6, (1972)
[23] Bilicki, Z.; Kwidziński, R.; Mohammadein, S. A., Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow, Int J Heat Mass Transf, 39, 4, 753-759, (1996) · Zbl 0963.76592
[24] Gavrilyuk, S., The structure of pressure relaxation terms: one-velocity case, Technical Report, (2014), EDF R&D report
[25] Helluy, P.; Hurisse, O.; Le Coupanec, E., Verification of a two-phase flow code based on an homogeneous model, Int J Finite Vol, 13, 1-18, (2016)
[26] Hurisse, O.; Le Coupannec, E., A new verification test case for the compressible module of code_saturne based on a nontrivial steady-state solution for the Euler system with energy, Technical Report, (2015), EDF R&D
[27] Bartolomei G., Batashova G., Brantov V., et al. Heat and mass transfer IV, Minsk ITMO AN BSSR Press 5:38.
[28] Bartolomei, G.; Batashova, G.; Brantov, V.; al., An experimental investigation of true volumetric vapour content with subcooled boiling in tubes, Therm Eng, 29, 132-135, (1982)
[29] Riegel, B., Contribution à l’étude de la décompression d’une capacité en régime diphasique, (1978), Université de Grenoble, Ph.D. thesis
[30] Edwards, A.; O’Brien, T., Studies of phenomena connected with the depressurization of water reactors, J Br Nucl Energy Soc, 9, 125-135, (1970)
[31] Buffard, T.; Gallouët, T.; Hérard, J.-M., A sequel to a rough Godunov scheme: application to real gases, Comput Fluids, 29, 7, 813-847, (2000) · Zbl 0961.76048
[32] Helluy, P.; Hérard, J.-M.; Mathis, H.; Müller, S., A simple parameter-free entropy correction for approximate Riemann solvers, C. R. Mécanique, 338, 493-498, (2010) · Zbl 1419.76458
[33] Gallouët, T.; Hérard, J.-M., A new approximate Godunov scheme with application to dense gas-solid flows, Proceeedings of the 17th AIAA computational flow dynamics conference, 1-14, (2005)
[34] Dellacherie, S., Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J Comput Phys, 229, 4, 978-1016, (2010) · Zbl 1329.76228
[35] Crouzet, F.; Daude, F.; Galon, P.; Hérard, J.-M.; Hurisse, O.; Liu, Y., Validation of a two-fluid model on unsteady liquid-vapor water flows, Comput Fluids, 119, 131-142, (2015) · Zbl 1390.76417
[36] Liu, Y., Contribution to the verification and the validation of an unsteady two-phase flow model, (2013), Aix-Marseille Université, Theses
[37] Baurin, G.; Touazi, O., Module TH1D V1.0: note de principe, Technical Report, (2016), EDF R&D
[38] Aubry, S.; Cahouet, J.; Lequesne, P.; Nicolas, G.; Pastorini, S., THYC code de thermohydraulique des coeurs de Rã©acteurs version 1 0.0. modélisation et Méthodes numériques, Technical Report, (1988), EDF R&D
[39] Aubry, S.; Carémoli, C.; Olive, J.; Rascle, P., The THYC three-dimensional thermal-hydraulic code for rod bundles: recent developments and validation tests, Nucl Technol, 112, 3, 331-345, (1995)
[40] Guelfi, A.; Pitot, S., THYC (thermohydraulique des composants) version 4.1 – note de principe, Technical Report, (2003), EDF R&D
[41] Le Coq, G.; Aubry, S.; Cahouet, J.; Lequesne, P.; Nicolas, G.; Pastorini, S., The THYC computer code. a finite volume approach for 3 dimensional two-phase flows in tube bundles, Bulletin de la Direction des Etudes et Recherches-Electricité de France Série A, 61-76, (1989)
[42] Rascle, P.; Morvant, O., Spécifications fonctionnelles de THETIS. calcul par interpolation des fonctions thermodynamiques des fluides diphasiques., Technical Report, (1995), EDF R&D
[43] Bilicki, Z.; Kardas, D.; Michaelides, E., Relaxation models for wave phenomena in liquid-vapor bubble flow in channels, J Fluids Eng, 120, 2, 369-377, (1998)
[44] Baurin, G.; Coulet, J.; Touazi, O., Consolidation et validation d’un module de thermo-hydraulique pour LES calculs des coeurs de centrales REP, Technical Report, (2017), EDF R&D report (in french)
[45] Bartak, J., A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water, Int J Multiph Flow, 16, 5, 789-798, (1990) · Zbl 1134.76489
[46] Allievi L.. Teoria del colpo dariete (the theory of waterhammer). Trans ASME Atti Collegio Ing Arch, English translation by Halmos EE 1929,1913.
[47] Daude, F.; Galon, P.; Gao, Z.; Blaud, E., Numerical experiments using a hllc-type scheme with ale formulation for compressible two-phase flows five-equation models with phase transition, Comput Fluids, 94, 112-138, (2014) · Zbl 1391.76397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.