×

zbMATH — the first resource for mathematics

On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows. (English) Zbl 1390.76312
Summary: The paper aims at investigating and comparing the efficiency of matrix-based and matrix-free implementations of implicit time integration strategies, here linearly implicit Rosenbrock-type Runge-Kutta schemes, in the context of a high order discontinous Galerkin space discretization applied to DNS/ILES of turbulent flows. In particular, the effects of time step size, GMRES solution tolerance and preconditioner, mesh size, order of polynomial approximation of the solution and parallel efficiency are here considered. The performance of the solvers have been compared though the solution of the two-dimensional laminar traveling waves test case, the ILES of the Rayleigh-Bénard natural convection up to \(\mathrm{Ra} = 10^8\), and the channel flow up to \(\mathrm{Re}_{\tau}= 950\). The results highlight that while matrix-based strategies are the most adequate for low-order polynomial approximations, considerable improvements in computational efficiency can be achieved, both in terms of CPU time and memory footprint, by a proper use of the matrix-free solver for three-dimensional test cases and very high-order accurate DG space discretizations.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
NITSOL; ROS3P
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bassi, F.; Crivellini, A.; Di Pietro, D.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput Fluids, 36, 10, 1529-1546, (2007) · Zbl 1194.76102
[2] Crivellini, A.; D’Alessandro, V.; Bassi, F., A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, J Comput Phys, 241, 388-415, (2013) · Zbl 1349.76194
[3] Crivellini, A.; D’Alessandro, V.; Bassi, F., High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Comput Fluids, 81, 122-133, (2013) · Zbl 1285.76014
[4] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds averaged Navier-Stokes and k - ω turbulence model equations, Comput Fluids, 34, 507-540, (2005) · Zbl 1138.76043
[5] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows, (Wesseling, P.; Oñate, E.; Périaux, J., Electronic Proceedings of the ECCOMAS CFD 2006 Conference, (2006), TU Delft Egmond aan Zee, The Netherlands) · Zbl 1158.76313
[6] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int J Numer Methods Eng, 87, 1-5, 232-261, (2011) · Zbl 1242.76085
[7] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor Comput Fluid Dyn, 27, 3-4, 221-237, (2013)
[8] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer Methods Fluids, 76, 8, 522-548, (2014)
[9] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Euro J Mech B/Fluids, 55, 367-379, (2016) · Zbl 1408.76360
[10] Abba, A.; Bonaventura, L.; Nini, M.; Restelli, M., Dynamic models for large eddy simulation of compressible flows with a high-order DG method, Comput Fluids, 122, 209-222, (2015) · Zbl 1390.76122
[11] Moura, R.; Sherwin, S.; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J Comput Phys, 298, 695-710, (2015) · Zbl 1349.76131
[12] Wiart, C. C.; Hillewaert, K.; Bricteux, L.; Winckelmans, G., Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method, Int J Numer Methods Fluids, 78, 6, 335-354, (2015)
[13] Chapelier, J.-B.; De La Llave Plata, M.; Renac, F.; Lamballais, E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Comput Fluids, 95, 210-226, (2014) · Zbl 1391.76209
[14] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2007), Springer Science & Business Media
[15] John, V.; Matthies, G.; Rang, J., A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 195, 44, 5995-6010, (2006) · Zbl 1124.76041
[16] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput Fluids, 118, 305-320, (2015) · Zbl 1390.76833
[17] Liu, X.; Xia, Y.; Luo, H.; Xuan, L., A comparative study of rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3d compressible Navier-Stokes equations, Commun Comput Phys, 20, 4, 1016-1044, (2016) · Zbl 1373.76096
[18] Crivellini, A.; Bassi, F., An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations, Comput Fluids, 50, 1, 81-93, (2011) · Zbl 1271.76164
[19] Birken, P.; Gassner, G.; Haas, M.; Munz, C.-D., Preconditioning for modal discontinuous Galerkin methods for unsteady 3d Navier-Stokes equations, J Comput Phys, 240, 20-35, (2013) · Zbl 1426.76520
[20] Renac, F.; Gérald, S.; Marmignon, C.; Coquel, F., Fast time implicit-explicit discontinuous Galerkin method for the compressible Navier-Stokes equations, J Comput Phys, 251, 272-291, (2013) · Zbl 1349.76256
[21] Wang, L.; Mavriplis, D. J., Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations, J Comput Phys, 225, 2, 1994-2015, (2007) · Zbl 1343.76022
[22] Fidkowski, K. J., Output-based space-time mesh optimization for unsteady flows using continuous-in-time adjoints, J Comput Phys, 341, 258-277, (2017) · Zbl 1376.76021
[23] Shahbazi, K.; Fischer, P. F.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J Comput Phys, 222, 1, 391-407, (2007) · Zbl 1216.76034
[24] Ferrer, E.; Willden, R., A high-order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput Fluids, 46, 1, 224-230, (2011) · Zbl 1431.76011
[25] Krank, B.; Fehn, N.; Wall, W. A.; Kronbichler, M., A high-order semi-explicit discontinuous Galerkin solver for 3d incompressible flow with application to DNS and LES of turbulent channel flow, J Comput Phys, 348, 634-659, (2017) · Zbl 1380.76040
[26] Bassi, F.; Crivellini, A., A high-order discontinuous Galerkin method for natural convection problems, (Wesseling, P.; Oñate, E.; Périaux, J., Electronic Proceedings of the ECCOMAS CFD 2006 Conference, (2006), TU Delft Egmond aan Zee, The Netherlands)
[27] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer Methods Partial Diff Eq, 16, 365-378, (2000) · Zbl 0957.65099
[28] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J Comput Phys, 218, 2, 794-815, (2006) · Zbl 1158.76313
[29] Crivellini, A.; D’Alessandro, V.; Bassi, F., Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: benchmark results for the flow past a sphere up to re=500, Comput Fluids, 86, 442-458, (2013) · Zbl 1290.76022
[30] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Decuypere, R.; Dibelius, G., 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, (1997), Technologisch Instituut Antwerpen, Belgium), 99-108
[31] Bassi, F.; Rebay, S., A high-order discontinuous Galerkin method for compressible turbulent flows, (Cockburn, C.-W. S.B.; Karniadakis, G. E., Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computational Science and Engeneering, 11, (2000), Springer-Verlag) · Zbl 0991.76039
[32] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[33] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285, (1997) · Zbl 0902.76056
[34] Balay S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, et al. PETSc Web page. http://www.mcs.anl.gov/petsc; 2014.
[35] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J Comput Phys, 193, 2, 357-397, (2004) · Zbl 1036.65045
[36] Pernice, M.; Walker, H., Nitsol: A Newton iterative solver for nonlinear systems, SIAM J Sci Comput, 19, 1, 302-318, (1998) · Zbl 0916.65049
[37] Chisholm, T. T.; Zingg, D. W., A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows, J Comput Phys, 228, 9, 3490-3507, (2009) · Zbl 1319.76033
[38] Rang, J.; Angermann, L., New rosenbrock methods of order 3 for PDAEs of index 2, (2007), Comenius University Press · Zbl 1093.65097
[39] Lang, J.; Verwer, J., ROS3P - an accurate third-order rosenbrock solver designed for parabolic problems, BIT, 41, 4, 731-738, (2001) · Zbl 0996.65099
[40] Rang, J.; Angermann, L., New rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1, BIT Numer Math, 45, 4, 761-787, (2005) · Zbl 1093.65097
[41] Lang, J., Adaptive multilevel solution of nonlinear parabolic PDE systems: theory, algorithm, and applications, Lecture Notes in Computational Science and Engineering, 16, (2001), Springer Science & Business Media · Zbl 0963.65102
[42] Blom, D. S.; Birken, P.; Bijl, H.; Kessels, F.; Meister, A.; van Zuijlen, A. H., A comparison of rosenbrock and ESDIRK methods combined with iterative solvers for unsteady compressible flows, Adv Comput Math, 42, 6, 1401-1426, (2016) · Zbl 1388.76166
[43] Togni, R.; Cimarelli, A.; De Angelis, E., Physical and scale-by-scale analysis of Rayleigh-Bénard convection, J Fluid Mech, 782, 380-404, (2015) · Zbl 1381.76329
[44] Yang, H.; Zhu, Z., Numerical simulation of turbulent Rayleigh-Bénard convection, Int Commun Heat Mass Transfer, 33, 2, 184-190, (2006)
[45] Verzicco, R.; Camussi, R., Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell, J Fluid Mech, 477, 19-49, (2003) · Zbl 1063.76572
[46] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to re_τ= 590, Phys Fluids, 11, 4, 943-945, (1999) · Zbl 1147.76463
[47] Hoyas, S.; Jiménez, J., Reynolds number effects on the Reynolds-stress budgets in turbulent channels, Phys Fluids, 20, 10, 101511, (2008) · Zbl 1182.76330
[48] Hoffmann, K. A.; Chiang, S. T., Computational fluid dynamics volume I, (2000), Engineering Education System, Wichita, Kan USA
[49] Choi, H.; Moin, P., Effects of the computational time step on numerical solutions of turbulent flow, J Comput Phys, 113, 1, 1-4, (1994) · Zbl 0807.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.