Dynamical spike solutions in a nonlocal model of pattern formation. (English) Zbl 1391.35289


35M33 Initial-boundary value problems for mixed-type systems of PDEs
34E13 Multiple scale methods for ordinary differential equations
35B25 Singular perturbations in context of PDEs
35K57 Reaction-diffusion equations


Full Text: DOI arXiv Link


[1] Amann H 1983 Dual semigroups and second order linear elliptic boundary value problems Isr. J. Math.45 225-54 · Zbl 0535.35017
[2] Bertolusso R and Kimmel M 2012 Modeling spatial effects in early carcinogenesis: stochastic versus deterministic reaction-diffusion systems Math. Modelling Nat. Phenom.7 245-60 · Zbl 1320.92033
[3] Bobrowski A 2015 Singular perturbations involving fast diffusion J. Math. Anal. Appl.427 1004-26
[4] Busse J-E, Gwiazda P and Marciniak-Czochra A 2016 Mass concentration in a nonlocal model of clonal selection J. Math. Biol.73 1001-33
[5] Fila M and Ninomiya H 2005 Reaction versus diffusion: blow-up induced and inhibited by diffusivity Usp. Mat. Nauk.60 207-26 · Zbl 1171.35411
[6] Fila M and Ninomiya H 2005 Reaction versus diffusion: blow-up induced and inhibited by diffusivity Math. Surv.60 1217-35 Engl. transl. · Zbl 1171.35411
[7] Gierer A and Meinhardt H 1972 A theory of biological pattern formation Kybernetik 12 30-9 · Zbl 0297.92007
[8] Gray P and Scott S K 1983 Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability Chem. Eng. Sci.38 29-43
[9] Hale J K and Sakamoto K 1989 Shadow systems and sttractors in reaction-diffusion equations Appl. Anal.32 287-303 · Zbl 0667.34072
[10] Härting S and Marciniak-Czochra A 2014 Spike patterns in a reaction-diffusion-ODE model with Turing instability Math. Methods Appl. Sci.37 1377-91 · Zbl 1290.35276
[11] Härting S, Marciniak-Czochra A and Takagi I 2016 Stable patterns with jump discontinuity in systems with turing instability and hysteresis Discrete Continuous Dyn. Syst. A 37 757-800 · Zbl 1357.35043
[12] Hock S, Ng Y, Hasenauer J, Wittmann D, Lutter D, Tru D, Wurst W, Prakash N and Theis F J 2013 Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation BMC Syst. Biol.7 1-14
[13] Karch G, Suzuki K and Zienkiewicz J 2016 Finite-time blow-up in general activator-inhibitor system Discrete Continuous Dyn. Syst.36 4997-5010 · Zbl 1361.35087
[14] Keener J P 1978 Activator and inhibitors in pattern formation Stud. Appl. Math.59 580-6
[15] Klika V, Baker R, Headon D and Gaffney E 2012 The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation Bull. Math. Biol.74 935-57 · Zbl 1235.92010
[16] Lengyel I and Epstein I R 1992 A chemical approach to designing Turing patterns in reaction-diffusion systems Proc. Natl Acad. Sci. USA 89 3977-9 · Zbl 0745.92002
[17] Li Y, Marciniak-Czochra A, Takagi I and Wu B 2017 Bifurcation analysis of a diffusion-ODE model with turing instability and hysteresis Hiroshima Math. J.47 217-47 (https://projecteuclid.org/euclid.hmj/1499392826) · Zbl 1373.35043
[18] Li F and Ni W-M 2009 On the global existence and finite time blow-up of shadow systems J. Differ. Equ.247 1762-76 · Zbl 1203.35049
[19] Marciniak-Czochra A 2003 Receptor-based models with diffusion-driven instability for pattern formation in Hydra J. Biol. Syst.11 293-324 · Zbl 1041.92002
[20] Marciniak-Czochra A 2012 Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication IMA J. Appl. Math.77 855-68
[21] Marciniak-Czochra A 2012 Reaction-diffusion models of pattern formation in developmental biology Mathematics and Life Sciences ed A Antoniouk and E V N Melnik (Berlin: De Gruyter) pp 189-212
[22] Marciniak-Czochra A, Karch G and Suzuki K 2013 Unstable patterns in reaction-diffusion model of early carcinogenesis J. Math. Pures Appl.99 509-43 · Zbl 1295.35072
[23] Marciniak-Czochra A, Karch G and Suzuki K 2017 Instability of turing patterns in reaction-diffusion-ODE systems J. Math. Biol.74 583-618 · Zbl 1356.35043
[24] Marciniak-Czochra A, Karch G, Suzuki K and Zienkiewicz J 2016 Diffusion-driven blowup in reaction-diffusion-ODE systems Differ. Integral Equ.29 715-30 (https://projecteuclid.org/euclid.die/1462298682) · Zbl 1374.35222
[25] Marciniak-Czochra A and Kimmel M 2006 Dynamics of growth and signaling along linear and surface structures in very early tumors Comput. Math. Methods Med.7 189-213 · Zbl 1111.92031
[26] Marciniak-Czochra A and Kimmel M 2007 Modelling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells Math. Models Methods Appl. Sci.17 1693-719 · Zbl 1135.92019
[27] Marciniak-Czochra A and Kimmel M 2008 Reaction-diffusion model of early carcinogenesis: the effects of influx of mutated cells Math. Modelling Nat. Phenom.3 90-114 · Zbl 1337.92047
[28] Marciniak-Czochra A and Mikelić A 2017 Shadow limits via the renormalization group method and the center manifold method Vietnam J. Math.45 103-25
[29] Marciniak-Czochra A and Ptashnyk M 2008 Derivation of a macroscopic receptor-based model using homogenisation techniques SIAM J. Mat. Anal.40 215-37 · Zbl 1178.35050
[30] Mizoguchi N, Ninomiya H and Yanagida E 1998 Diffusion-induced blow-up in a nonlinear parabolic system J. Dyn. Differ. Equ.10 619-38 · Zbl 0917.35052
[31] Murray J D 2002 Mathematical biology. I. An introduction(Interdisciplinary Applied Mathematics vol 17) 3rd edn (New York: Springer) · Zbl 1006.92001
[32] Murray J D 2003 Mathematical biology. II. Spatial models and biomedical applications(Interdisciplinary Applied Mathematics vol 18) 3rd edn (New York: Springer) · Zbl 1006.92002
[33] Ni W-M, Polácik P and Yanagida E 2001 Monotonicity of stable solutions in shadow systems Trans. Am. Math. Soc.353 5057-69 · Zbl 0981.35018
[34] Ni W-M, Suzuki K and Takagi I 2006 The dynamics of a kinetic activator-inhibitor system J. Differ. Equ.229 426-65 · Zbl 1108.34044
[35] Nishiura Y 1982 Global structure of bifurcating solutions of some reaction-diffusion systems SIAM J. Math. Anal.13 555-93 · Zbl 0501.35010
[36] Nishiura Y 1994 Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit Dyn. Reported 3 25-103 · Zbl 0806.35079
[37] Pham K, Chauviere A, Hatzikirou H, Li X, Byrne H M, Cristini V and Lowengrub J 2011 Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy J. Biol. Dyn.6 54-71
[38] Pierre M and Schmitt D 1997 Blowup in reaction-diffusion systems with dissipation of mass SIAM J. Math. Anal.28 259-69 · Zbl 0877.35061
[39] Quittner P and Souplet Ph 2007 Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States (Basel: Birkhäuser) · Zbl 1128.35003
[40] Rothe F 1984 Global Solutions of Reaction-Diffusion Systems(Lecture Notes in Mathematics vol 1072) (Berlin: Springer)
[41] Shatah J and Strauss W 1998 Spectral condition for instability Nonlinear PDE’s, Dynamics and Continuum Physics(South Hadley, MA,) (Providence, RI: American Mathematical Society) pp 189-98
[42] Suzuki K 2011 Mechanism generating spatial patterns in reaction-diffusion systems Interdiscip. Inform. Sci.17 131-53 · Zbl 1258.35030
[43] Suzuki K and Takagi I 2011 On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation Funkcialaj Ekvacioj 54 237-74 · Zbl 1243.35162
[44] Turing A M 1952 The chemical basis of morphogenesis Phil. Trans. R. Soc. B 237 37-72 · Zbl 1403.92034
[45] Umulis D M, Serpe M, O’Connor M B and Othmer H G 2006 Robust, bistable patterning of the dorsal surface of the Drosophila embryo Proc. Natl Acad. Sci.103 11613-8
[46] Wei J and Winter M 2014 Mathematical Aspects of Pattern Formation in Biological Systems (New York: Springer) · Zbl 1295.92013
[47] Zeidler E 1986 Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems (New York: Springer) · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.