×

zbMATH — the first resource for mathematics

Gröbner bases of neural ideals. (English) Zbl 1395.92013

MSC:
92B99 Mathematical biology in general
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Allman, E. S.; Rhodes, J. A., Phylogenetic ideals and varieties for the general Markov model, Adv. Appl. Math., 40, 2, 127-148, (2008) · Zbl 1131.92046
[2] Becker, T.; Weispfenning, V., Gröbner Bases: A Computational Approach to Commutative Algebra, (1993), Springer, New York
[3] Brickenstein, M.; Dreyer, A., Polybori: A framework for Gröbner-basis computations with Boolean polynomials, J. Symbolic Comput., 44, 9, 1326-1345, (2009) · Zbl 1186.68571
[4] Cox, D. A.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, (2015), Springer · Zbl 1335.13001
[5] J. Cruz, C. Giusti, V. Itskov and W. Kronholm, On open and closed convex codes, preprint (2016), arXiv:1609.03502. · Zbl 1407.92031
[6] Curto, C.; Gross, E.; Jeffries, J.; Morrison, K.; Omar, M.; Rosen, Z.; Shiu, A.; Youngs, N., What makes a neural code convex?, SIAM J. Appl. Algebra Geom., 1, 1, 222-238, (2017) · Zbl 1362.92012
[7] Curto, C.; Itskov, V.; Veliz-Cuba, A.; Youngs, N., The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes, Bull. Math. Biol., 75, 9, 1571-1611, (2013) · Zbl 1311.92043
[8] C. Curto and N. Youngs, Neural ring homomorphisms and maps between neural codes, preprint (2015), arXiv:1511.00255.
[9] Engström, A.; Kahle, T.; Sullivant, S., Multigraded commutative algebra of graph decompositions, J. Algebraic Combin., 39, 2, 335-372, (2014) · Zbl 1314.13049
[10] Gross, E.; Obatake, N. K.; Youngs, N., Neural ideals and stimulus space visualization, Adv. Appl. Math., 95, 65-95, (2018) · Zbl 1382.92021
[11] R. A. Jeffs, M. Omar, N. Suaysom, A. Wachtel and N. Youngs, Sparse neural codes and convexity, preprint (2015), arXiv:1511.00283. · Zbl 1412.52002
[12] Kreuzer, M.; Robbiano, L., Computational Commutative Algebra 1, (2008), Springer-Verlag, Berlin
[13] Lienkaemper, C.; Shiu, A.; Woodstock, Z., Obstructions to convexity in neural codes, Adv. Appl. Math., 85, 31-59, (2017) · Zbl 1353.05132
[14] Mora, T.; Robbiano, L., The Gröbner Fan of an ideal, J. Symbolic Comput., 6, 2-3, 183-208, (1988) · Zbl 0668.13017
[15] O’Keefe, J.; Dostrovsky, J., The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat, Brain Res., 34, 1, 171-175, (1971)
[16] E. Petersen, N. Youngs, R. Kruse, D. Miyata, R. Garcia and L. D. G. Puente, Neural ideals in SageMath, preprint (2016), arXiv:1609.09602. · Zbl 1395.68351
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.