zbMATH — the first resource for mathematics

Diagram calculus for a type affine \(C\) Temperley-Lieb algebra. II. (English) Zbl 06902465
Summary: In a previous paper, we presented an infinite dimensional associative diagram algebra that satisfies the relations of the generalized Temperley-Lieb algebra having a basis indexed by the fully commutative elements of the Coxeter group of type affine \(C\). We also provided an explicit description of a basis for the diagram algebra. In this paper, we show that the diagrammatic representation is faithful and establish a correspondence between the basis diagrams and the so-called monomial basis of the Temperley-Lieb algebra of type affine \(C\).

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20C08 Hecke algebras and their representations
57M15 Relations of low-dimensional topology with graph theory
Full Text: DOI arXiv
[1] Billey, S. C.; Jones, B. C., Embedded factor patterns for deodhar elements in Kazhdan-Lusztig theory, Ann. Comb., 11, 3-4, 285-333, (2007) · Zbl 1189.20008
[2] Cartier, P.; Foata, D., Problèmes combinatoires de commutation et réarrangements, Lect. Notes Math., vol. 85, (1969), Springer-Verlag New York/Berlin · Zbl 0186.30101
[3] Ernst, D. C., A diagrammatic representation of an affine C Temperley-Lieb algebra, (2008), University of Colorado, PhD thesis
[4] Ernst, D. C., Non-cancellable elements in type affine C Coxeter groups, Int. Electron. J. Algebra, 8, 191-218, (2010) · Zbl 1253.20039
[5] Ernst, D. C., Diagram calculus for a type affine C Temperley-Lieb algebra, I, J. Pure Appl. Algebra, 216, 11, 2467-2488, (2012) · Zbl 1266.20003
[6] Fan, C. K., Structure of a Hecke algebra quotient, J. Am. Math. Soc., 10, 139-167, (1997) · Zbl 0861.20042
[7] Fan, C. K.; Green, R. M., On the affine Temperley-Lieb algebras, J. Lond. Math. Soc., 60, 366-380, (1999) · Zbl 0940.20010
[8] Geck, M.; Pfeiffer, G., Characters of finite Coxeter groups and Iwahori-Hecke algebras, (2000), Oxford University Press · Zbl 0996.20004
[9] Graham, J. J., Modular representations of Hecke algebras and related algebras, (1995), University of Sydney, PhD thesis
[10] Green, R. M., Generalized Temperley-Lieb algebras and decorated tangles, J. Knot Theory Ramif., 7, 155-171, (1998) · Zbl 0926.20005
[11] Green, R. M., Decorated tangles and canonical bases, J. Algebra, 246, 594-628, (2001) · Zbl 0998.20007
[12] Green, R. M., On planar algebras arising from hypergroups, J. Algebra, 263, 126-150, (2003) · Zbl 1064.20007
[13] Green, R. M., Star reducible Coxeter groups, Glasg. Math. J., 48, 583-609, (2006) · Zbl 1149.20034
[14] Green, R. M., Generalized Jones traces and Kazhdan-Lusztig bases, J. Pure Appl. Algebra, 211, 744-772, (2007) · Zbl 1172.20004
[15] Green, R. M., On the Markov trace for Temperley-Lieb algebras of type \(E_n\), J. Knot Theory Ramif., 18, (2007)
[16] Green, R. M.; Losonczy, J., Canonical bases for Hecke algebra quotients, Math. Res. Lett., 6, 213-222, (1999) · Zbl 0961.20007
[17] Green, R. M.; Losonczy, J., A projection property for Kazhdan-Lusztig bases, Int. Math. Res. Not., 1, 23-34, (2000) · Zbl 0961.20008
[18] Green, R. M.; Martin, P. P.; Parker, A. E., A presentation for the symplectic blob algebra, J. Algebra Appl., 11, 3, (2012) · Zbl 1279.16016
[19] Humphreys, J. E., Reflection groups and Coxeter groups, (1990), Cambridge University Press Cambridge · Zbl 0725.20028
[20] Jones, V. F.R., Planar algebras, I, (1999) · Zbl 1328.46049
[21] Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 395-407, (1987) · Zbl 0622.57004
[22] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 165-184, (1979) · Zbl 0499.20035
[23] Lusztig, G., Cells in affine Weyl groups, I, (Collection, (1985)), 255-287
[24] Martin, P. P.; Green, R. M.; Parker, A. E., Towers of recollement and bases for diagram algebras: planar diagrams and a little beyond, J. Algebra, 316, 392-452, (2007) · Zbl 1156.16010
[25] Penrose, R., Angular momentum: an approach to combinatorial space-time, (Quantum Theory and Beyond, (1971), Cambridge University Press), 151-180
[26] Shi, J. Y., Fully commutative elements in the Weyl and affine Weyl groups, J. Algebra, 284, 13-36, (2005) · Zbl 1079.20059
[27] Stembridge, J. R., On the fully commutative elements of Coxeter groups, J. Algebraic Comb., 5, (1996) · Zbl 0864.20025
[28] Stembridge, J. R., The enumeration of fully commutative elements of Coxeter groups, J. Algebraic Comb., (1998) · Zbl 0897.05087
[29] Temperley, H. N.V.; Lieb, E. H., Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem, Proc. R. Soc. Lond. Ser. A, 322, 251-280, (1971) · Zbl 0211.56703
[30] Viennot, G., Heaps of pieces, I: basic definitions and combinatorial lemmas, (Comb. Énumérative, Lecture Notes in Mathematics, (1986), Springer-Verlag Berlin) · Zbl 0618.05008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.