×

SVV algebras. (English) Zbl 1427.16004

Summary: In [Adv. Math. 227, No. 1, 267–291 (2011; Zbl 1235.20006)] P. Shan et al. introduced a family of graded algebras in order to prove a conjecture of Kashiwara and Miemietz which stated that the finite-dimensional representations of affine Hecke algebras of type \(D\) categorify a module over a certain quantum group. We study these algebras, and in various cases, show how they relate to Varagnolo-Vasserot algebras and to quiver Hecke algebras which in turn allows us to deduce various homological properties.

MSC:

16D90 Module categories in associative algebras
17B70 Graded Lie (super)algebras

Citations:

Zbl 1235.20006
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] J. Brundan, A. Kleshchev and P. J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353-1404. · Zbl 1314.16005 · doi:10.1215/00127094-2681278
[2] W. Cui, Affine cellularity of affine Birman-Murakami-Wenzl algebras, arXiv:1406.3516.
[3] N. Enomoto and M. Kashiwara, Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 131-136. · Zbl 1130.20008 · doi:10.3792/pjaa.82.131
[4] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1-34. · Zbl 0853.20029 · doi:10.1007/BF01232365
[5] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. · Zbl 1188.81117 · doi:10.1090/S1088-4165-09-00346-X
[6] A. S. Kleshchev, Affine highest weight categories and affine quasihereditary algebras, Proc. Lond. Math. Soc. (3) 110 (2015), no. 4, 841-882. · Zbl 1360.16010
[7] A. S. Kleshchev, J. W. Loubert and V. Miemietz, Affine cellularity of Khovanov-Lauda-Rouquier algebras in type \(A\), J. Lond. Math. Soc. (2) 88 (2013), no. 2, 338-358. · Zbl 1293.20008 · doi:10.1112/jlms/jdt023
[8] M. Kashiwara and V. Miemietz, Crystals and affine Hecke algebras of type D, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 135-139. · Zbl 1206.17014 · doi:10.3792/pjaa.83.135
[9] S. Koenig and C. Xi, Affine cellular algebras, Adv. Math. 229 (2012), no. 1, 139-182. · Zbl 1268.20008 · doi:10.1016/j.aim.2011.08.010
[10] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023v1. · Zbl 1247.20002 · doi:10.1142/S1005386712000247
[11] P. Shan, M. Varagnolo and E. Vasserot, Canonical bases and affine Hecke algebras of type \(D\), Adv. Math. 227 (2011), no. 1, 267-291. · Zbl 1235.20006
[12] M. Varagnolo and E. Vasserot, Canonical bases and affine Hecke algebras of type B, Invent. Math. 185 (2011), no. 3, 593-693. · Zbl 1239.20007 · doi:10.1007/s00222-011-0314-y
[13] R. D. Walker, On Morita equivalences between KLR algebras and VV algebras, arXiv:1603.00796.
[14] G. Yang, Affine cellular algebras and Morita equivalences, Arch. Math. (Basel) 102 (2014), no. 4, 319-327. · Zbl 1318.16013 · doi:10.1007/s00013-014-0634-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.