×

zbMATH — the first resource for mathematics

Nesterov’s accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional. (English) Zbl 06904974

MSC:
65 Numerical analysis
90 Operations research, mathematical programming
Software:
TIGRA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anzengruber, S. W.; Bürger, S.; Hofmann, B.; Steinmeyer, G., Variational regularization of complex deautoconvolution and phase retrieval in ultrashort laser pulse characterization, Inverse Problems, 32, (2016) · Zbl 1342.78045
[2] Attouch, H.; Peypouquet, J., The rate of convergence of Nesterov’s accelerated forward–backward method is actually faster than o(1/k2), SIAM J. Optim., 26, 1824-1834, (2016) · Zbl 1346.49048
[3] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, (2017), Berlin: Springer, Berlin · Zbl 1359.26003
[4] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 183-202, (2009) · Zbl 1175.94009
[5] Birkholz, S.; Steinmeyer, G.; Koke, S.; Gerth, D.; Bürger, S.; Hofmann, B., Phase retrieval via regularization in self-diffraction-based spectral interferometry, J. Opt. Soc. Am. B, 32, 983-992, (2015)
[6] Blaschke, B.; Neubauer, A.; Scherzer, O., On convergence rates for the iteratively regularized Gauss–Newton method, IMA J. Numer. Anal., 17, 421, (1997) · Zbl 0881.65050
[7] Bürger, S.; Hofmann, B., About a deficit in low-order convergence rates on the example of autoconvolution, Appl. Anal., 94, 477-493, (2015) · Zbl 1312.65087
[8] Bürger, S.; Flemming, J.; Hofmann, B., On complex-valued deautoconvolution of compactly supported functions with sparse Fourier representation, Inverse Problems, 32, (2016) · Zbl 1431.47005
[9] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, (1996), Dordrecht: Kluwer, Dordrecht · Zbl 0859.65054
[10] Fleischer, G.; Hofmann, B., On inversion rates for the autoconvolution equation, Inverse Problems, 12, 419, (1996) · Zbl 0862.45007
[11] Gerth, D.; Hofmann, B.; Birkholz, S.; Koke, S.; Steinmeyer, G., Regularization of an autoconvolution problem in ultrashort laser pulse characterization, Inverse Problems Sci. Eng., 22, 245-266, (2014) · Zbl 1304.47013
[12] Gorenflo, R.; Hofmann, B., On autoconvolution and regularization, Inverse Problems, 10, 353, (1994) · Zbl 0804.45003
[13] Hanke, M., Accelerated Landweber iterations for the solution of ill-posed equations, Numer. Math., 60, 341-373, (1991) · Zbl 0745.65038
[14] Hanke, M., A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13, 79, (1997) · Zbl 0873.65057
[15] Hanke, M.; Neubauer, A.; Scherzer, O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72, 21-37, (1995) · Zbl 0840.65049
[16] Hofmann, B.; Scherzer, O., Local ill-posedness and source conditions of operator equations in Hilbert spaces, Inverse Problems, 14, 1189, (1998) · Zbl 0915.65052
[17] Hubmer, S.; Ramlau, R., Convergence analysis of a two-point gradient method for nonlinear ill-posed problems, Inverse Problems, 33, (2017) · Zbl 1378.65116
[18] Hubmer, S.; Neubauer, A.; Ramlau, R.; Voss, H. U., On the parameter estimation problem of magnetic resonance advection imaging, Inverse Problems Imaging, 12, 175-204, (2018) · Zbl 1397.65175
[19] Hubmer, S.; Sherina, E.; Neubauer, A.; Scherzer, O., Lamé parameter estimation from static displacement field measurements in the framework of nonlinear inverse problems, SIAM J. Imaging Sci., 11, 1268-1293, (2018)
[20] Jin, Q., On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems, Numer. Math., 115, 229-259, (2010) · Zbl 1201.65087
[21] Jin, Q., Landweber–Kaczmarz method in Banach spaces with inexact inner solvers, Inverse Problems, 32, (2016) · Zbl 1356.65146
[22] Jin, Q.; Tautenhahn, U., On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems, Numer. Math., 111, 509-558, (2009) · Zbl 1253.65087
[23] Kaltenbacher, B.; Neubauer, A.; Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems, (2008), Berlin: de Gruyter, Berlin · Zbl 1145.65037
[24] Kindermann, S., Convergence of the gradient method for ill-posed problems, Inverse Problems Imaging, 11, 703-720, (2017) · Zbl 1368.65082
[25] Nesterov, Y., A method of solving a convex programming problem with convergence rate O(1/k2), Sov. Math.—Dokl., 27, 372-376, (1983)
[26] Neubauer, A., On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85, 309-328, (2000) · Zbl 0963.65058
[27] Neubauer, A., Some generalizations for Landweber iteration for nonlinear ill-posed problems in Hilbert scales, J. Inverse Ill-Posed Problems, 24, 393-406, (2016) · Zbl 1350.65053
[28] Neubauer, A., On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inverse Ill-Posed Problems, 25, 381-390, (2017) · Zbl 1367.47017
[29] Ramlau, R., TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems, Inverse Problems, 19, 433, (2003) · Zbl 1029.65059
[30] Ramlau, R., A modified Landweber method for inverse problems, Numer. Funct. Anal. Optim., 20, 79-98, (1999) · Zbl 0970.65064
[31] Rockafellar, R. T.; Wets, M.; Wets, T. J B., Variational Analysis, (2009), Berlin: Springer, Berlin
[32] Scherzer, O., Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194, 911-933, (1995) · Zbl 0842.65036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.