×

zbMATH — the first resource for mathematics

Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. (English) Zbl 1395.49015

MSC:
49K20 Optimality conditions for problems involving partial differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
76N25 Flow control and optimization for compressible fluids and gas dynamics
35Q35 PDEs in connection with fluid mechanics
49N10 Linear-quadratic optimal control problems
Software:
FEniCS; RBniCS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] E. Bader, M. Kärcher, M. A. Grepl, and K. Veroy, Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints, SIAM J. Sci. Comput., 38 (2016), pp. A3921–A3946. · Zbl 1426.49029
[2] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1136–1161. · Zbl 1352.76039
[3] F. Ballarin, A. Sartori, and G. Rozza, RBniCS—Reduced Order Modelling in FEniCS, (2015).
[4] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), pp. 667–672. · Zbl 1061.65118
[5] D. W. Behringer, M. Ji, and A. Leetmaa, An improved coupled model for ENSO prediction and implications for ocean initialization, part I: The ocean data assimilation system, Monthly Weather Review, 126 (1998), pp. 1013–1021.
[6] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math. Sci., 166, Springer-Verlag, New York, 2009. · Zbl 1168.65067
[7] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., 44, Springer-Verlag, New York, 2013. · Zbl 1277.65092
[8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automatique Informatique Recherche Opérationnelle Analyse Numérique, 8 (1974), pp. 129–151.
[9] J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier–Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), pp. 337–355. · Zbl 1120.76323
[10] J. A. Carton, G. Chepurin, X. Cao, and B. Giese, A simple Ocean data assimilation analysis of the global upper ocean 1950–95, part I: Methodology, J. Physical Oceanography, 30 (2000), pp. 294–309.
[11] J. A. Carton and B. S. Giese, A reanalysis of ocean climate using simple ocean data assimilation (SODA), Monthly Weather Review, 136 (2008), pp. 2999–3017.
[12] F. Cavallini and F. Crisciani, Quasi-Geostrophic Theory of Oceans and Atmosphere: Topics in the Dynamics and Thermodynamics of the Fluid Earth, Atmos. Oceanogr. Sci. Libr. 45, Springer-Verlag, New York, 2013.
[13] D. Chapelle, A. Gariah, P. Moireau, and J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: Analysis, assessments and applications to parameter estimation, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1821–1843, . · Zbl 1295.65096
[14] P. Chen, A. Quarteroni, and G. Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 133 (2015), pp. 67–102, . · Zbl 1344.93109
[15] J. C. de los Reyes and F. Tröltzsch, Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints, SIAM J. Control Optim., 46 (2007), pp. 604–629. · Zbl 1356.49034
[16] L. Dedè, Optimal flow control for Navier-Stokes equations: Drag minimization, Internat. J. Numer. Methods Fluids, 55 (2007), pp. 347–366.
[17] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM J. Sci. Comput., 32 (2010), pp. 997–1019. · Zbl 1221.35030
[18] L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints, J. Sci. Comput., 50 (2012), pp. 287–305, .
[19] L. Dedè, Adaptive and Reduced Basis Method for Optimal Control Problems in Environmental Applications, Ph.D. thesis, Politecnico di Milano, 2008, .
[20] M. C. Delfour and J. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Adv. Des. Control 22, SIAM, Philadelphia, 2011.
[21] E. Fernández Cara and E. Zuazua Iriondo, Control theory: History, mathematical achievements and perspectives, Bol. Soc. Espanola Mat. Apl., 26, 79–140, (2003).
[22] A. L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems, SIAM J. Sci. Comput., 34 (2012), pp. A2812–A2836. · Zbl 1255.76024
[23] M. Ghil and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography, Adv. Geophys., 33 (1991), pp. 141–266.
[24] M. D. Gunzburger, Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2003. · Zbl 1088.93001
[25] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, Adv. Des. Control 7, SIAM, Philadelphia, 2003. · Zbl 1020.74001
[26] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs Math., Springer, Milano, 2015. · Zbl 1329.65203
[27] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, 23, Springer-Verlag, New York, 2008. · Zbl 1167.49001
[28] K. Ito and S. Ravindran, A reduced-order method for simulation and control of fluid flows, J. Comput. Phys., 143 (1998), pp. 403–425. · Zbl 0936.76031
[29] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
[30] M. Kärcher and M. A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 416–441. · Zbl 1287.49032
[31] T. Kim, T. Iliescu, and E. Fried, B-spline based finite-element method for the stationary quasi-geostrophic equations of the Ocean, Comput. Methods Appl. Mech. Engrg., 286 (2015), pp. 168–191.
[32] K. Kunisch and S. Volkwein, Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345–371. · Zbl 0949.93039
[33] K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM Math. Model. Numer. Anal., 42 (2008), pp. 1–23. · Zbl 1141.65050
[34] A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, New York, 2012. · Zbl 1247.65105
[35] B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, New York, 2010. · Zbl 0970.76003
[36] R. Mosetti, C. Fanara, M. Spoto, and E. Vinzi, Innovative strategies for marine protected areas monitoring: The experience of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale in the Natural Marine Reserve of Miramare, Trieste-Italy, in OCEANS, 2005, Proceedings of MTS/IEEE, IEEE, 2005, pp. 92–97.
[37] F. Negri, Reduced Basis Method for Parametrized Optimal Control Problems Governed by PDEs, MS thesis, Politecnico di Milano, 2011.
[38] F. Negri, A. Manzoni, and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Comput. Math. Appl., 69 (2015), pp. 319–336. · Zbl 1421.49026
[39] F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35 (2013), pp. A2316–A2340. · Zbl 1280.49046
[40] M. Pošta and T. Roubíček, Optimal control of Navier–Stokes equations by Oseen approximation, Comput. Math. Appl., 53 (2007), pp. 569–581.
[41] C. Prud’Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Engrg., 124 (2002), pp. 70–80.
[42] A. Quarteroni, G. Rozza, L. Dedè, and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes, in IFIP Conference on System Modeling and Optimization, F. Ceragioli, A. Dontchev, H. Futura, K. Marti, L. Pandolfi, eds., System Modeling and Optimization 199, Springer, Boston, 2005, pp. 261–273. · Zbl 1214.49029
[43] A. Quarteroni, G. Rozza, and A. Quaini, Reduced basis methods for optimal control of advection-diffusion problems, in Advances in Numerical Mathematics, RAS, Moscow, 2007, pp. 193–216.
[44] G. Rozza, D. Huynh, and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: Roles of the inf-sup stability constants, Numer. Math., 125 (2013), pp. 115–152. · Zbl 1318.76006
[45] G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Engrg., 15 (2008), pp. 229–275. · Zbl 1304.65251
[46] G. Rozza, A. Manzoni, and F. Negri, Reduction strategies for PDE-constrained oprimization problems in haemodynamics, in ECCOMAS, Congress Proceedings, Vienna, Austria, 2012, pp. 1749–1768.
[47] O. San and T. Iliescu, A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation, Adv. Comput. Math., 41 (2015), pp. 1289–1319. · Zbl 1327.37028
[48] J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimisation problems, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 752–773. · Zbl 1154.65029
[49] V. Schulz and I. Gherman, One-shot methods for aerodynamic shape optimization, in MEGADESIGN and MegaOpt-German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, Springer-Verlag, New York, 2009, pp. 207–220.
[50] T. Shiganova and A. Malej, Native and non-native ctenophores in the Gulf of Trieste, Northern Adriatic Sea, J. Plankton Research, 31 (2009), pp. 61–71.
[51] S. Taasan, One Shot Methods for Optimal Control of Distributed Parameter Systems 1: Finite Dimensional Control, Tech. Report 91–2, Institute for Computer Applications in Science and Engineering, Hampton, VA, 1991.
[52] D. Torlo, F. Ballarin, and G. Rozza, Weighted stabilized reduced basis methods for parametrized advection dominated problems with random inputs, to appear.
[53] E. Tziperman and W. C. Thacker, An optimal-control/adjoint-equations approach to studying the oceanic general circulation, J. Phys. Oceanography, 19 (1989), pp. 1471–1485.
[54] H. Yang, G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, Intensification and poleward shift of subtropical western boundary currents in a warming climate, J. Geophys. Res. Oceans, 121 (2016), pp. 4928–4945.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.