Bardin, B. S. On the stability of a periodic Hamiltonian system with one degree of freedom in a transcendental case. (English. Russian original) Zbl 1436.70006 Dokl. Math. 97, No. 2, 161-163 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 5, 485-488 (2018). Summary: The stability of an equilibrium of a nonautonomous Hamiltonian system with one degree of freedom whose Hamiltonian function depends \(2\pi\)-periodically on time and is analytic near the equilibrium is considered. The multipliers of the system linearized around the equilibrium are assumed to be multiple and equal to 1 or \(-1\). Sufficient conditions are found under which a transcendental case occurs, i.e., stability cannot be determined by analyzing the finite-power terms in the series expansion of the Hamiltonian about the equilibrium. The equilibrium is proved to be unstable in the transcendental case. Cited in 1 Document MSC: 70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics 70H14 Stability problems for problems in Hamiltonian and Lagrangian mechanics 37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems 34D20 Stability of solutions to ordinary differential equations PDF BibTeX XML Cite \textit{B. S. Bardin}, Dokl. Math. 97, No. 2, 161--163 (2018; Zbl 1436.70006); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 5, 485--488 (2018) Full Text: DOI References: [1] Lyapunov, A. M., General problem of the stability of motion, Collected Works, 2, 7-263, (1956) [2] A. P. Markeev, Libration Points in Celestial Mechanics and Astrodynamics (Nauka, Moscow, 1978) [in Russian]. [3] Markeev, A. P., No article title, Nelin. Din., 11, 503-545, (2015) · Zbl 1381.70034 [4] Markeev, A. P., No article title, Regular Chaotic Dyn., 22, 773-781, (2017) · Zbl 1433.70029 [5] Bardin, B. S.; Lanchares, V. B., No article title, Regular Chaotic Dyn., 20, 627-648, (2015) · Zbl 1351.37222 [6] Bardin, B. S.; Chekina, E. A., No article title, Regular Chaotic Dyn., 22, 808-824, (2017) · Zbl 1437.70029 [7] Kholostova, O. V.; Safonov, A. I., No article title, Regular Chaotic Dyn., 22, 792-807, (2017) · Zbl 1433.70032 [8] Ivanov, A. P.; Sokol’skii, A. G., No article title, J. Appl. Math. Mech., 44, 687-691, (1980) · Zbl 0599.70034 [9] A. P. Markeev, Linear Hamiltonian Systems and Some Problems of Stability of Satellite’s Motion Relative to Its Center of Mass (NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009) [in Russian]. [10] G. E. O. Giacaglia, Perturbation Methods in Nonlinear Systems (Springer-Verlag, New York, 1972). · Zbl 0282.34001 [11] Merman, G. A., No article title, Byul. Inst. Teor. Astron. Akad. Nauk SSSR, 9, 394-424, (1964) [12] Lyapunov, A. M., Principles, Collected Works, 2, 264-271, (1956) [13] Bardin, B. S., No article title, Mech. Solids, 42, 177-183, (2007) [14] Bardin, B. S.; Savin, A. A., No article title, J. Appl. Math. Mech., 77, 578-587, (2013) · Zbl 1327.70004 [15] Bardin, B. S.; Maciejewski, A. J., No article title, Qual. Theory Dyn. Syst., 12, 207-216, (2013) · Zbl 1308.34071 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.