×

Some global dynamical properties of a class of pattern formation equations. (English) Zbl 0691.35019

The authors consider the equations \[ \begin{aligned} \partial u/\partial t + \Delta^2 u + \Delta u + (1/2) |\nabla u|^2 &= 0 \tag{0.1} \\ \partial u/\partial t + \Delta^2 u + \Delta u - \beta\Delta(u^3) &= 0 \quad (\beta >0). \tag{0.2} \end{aligned} \] The mathematical study of (0.1) and (0.2) and their natural generalization is achieved by conceiving them as infinite dimensional dynamical systems. In this setting they are mainly concerned with the description of the asymptotic behavior of the solutions of (0.1) and (0.2). This amounts to perform a nonlinear stability analysis, to describe the structure of the associated global attractor, to compute an upper bound for its dimension, to construct absorbing sets.
Reviewer: Y.Ebihara

MSC:

35B45 A priori estimates in context of PDEs
35K55 Nonlinear parabolic equations
35K25 Higher-order parabolic equations
76F99 Turbulence
35B35 Stability in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Etude Numérique D’Une équation d’Évolution non Linéaire Décrivant L’insstabilité Thermodiffusive D’un Front De Flamme, Thése de 3e Cycle (1982), Université de Provence.
[2] M. T. AIMAR AND P. Penel, Quelques aspects numériques nouveaux pour le modele de front de flamme, Colloque National d’Analyse Numerique, Guidel, France.
[3] DOI: 10.1063/1.864083 · Zbl 0521.76046
[4] Babin A. V., J. Math. Pures Appl 62 pp 441– (1983)
[5] Babin A. V., Uspekhi Mat. Nauk 38 pp 133– (1983)
[6] Attracteurs Maximaux dans les equations aux dérivées partielles, Notes de séminaire; edited by A. Haraux, 1984.
[7] DOI: 10.1007/BF00251291 · Zbl 0258.35039
[8] Benney D. J., J. Math. and Phys 45 pp 150– (1966)
[9] DOI: 10.1063/1.1744102
[10] Cahn J. W., Trans. Met Soc. of AIME 248 pp 166– (1968)
[11] DOI: 10.1016/0022-0396(75)90084-4 · Zbl 0304.35008
[12] P. Clavin, Dynamical behavior of premixed flame fronts in laminar and turbulent Hows, Progress in Energy and Combustion Science, 1984.
[13] DOI: 10.1088/0029-5515/16/6/009
[14] DOI: 10.1002/cpa.3160380102 · Zbl 0582.35092
[15] Constantin P., Memoirs of AMS 53 pp 1– (1985)
[16] P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, preprint. · Zbl 0683.58002
[17] Foias C., Some analytic and geometric properties of the solutions of the Navier-Stokes equations 58 pp 339– (1979)
[18] DOI: 10.1016/0167-2789(83)90297-X · Zbl 0584.35007
[19] Foias C., C.R. Acad. Sci 301 (1985)
[20] C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equation, IMA preprint, 234 (1986); J Differential Equations 73 (1988), pp. 309-353. · Zbl 0643.58004
[21] Foias C., C. R. Acad. Sci. Paris 6 pp 285– (1985)
[22] Foias C., Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension · Zbl 0694.35028
[23] DOI: 10.1016/0362-546X(86)90037-4 · Zbl 0622.35029
[24] Hale J. K., Asymptotic behavior and dynamics in infinite dimensions (1984)
[25] Hale J. K., Stability and bifurcation in a parabolic equation (1980) · Zbl 0483.58018
[26] Hale J. K., Asymptotic behavior of gradient like systems, in Dynamical Systems II (1982) · Zbl 0542.34027
[27] Hartman P., Ordinary differential equations (1973) · Zbl 0281.34001
[28] Henry D., Geometric theory of semilinear parabolic equations, LN840 (1981) · Zbl 0456.35001
[29] DOI: 10.1016/0022-0396(85)90153-6 · Zbl 0572.58012
[30] DOI: 10.1007/BF01011633
[31] J. Mchyman B. Nlcolaenko, to appear.
[32] Kalantarov V. K., Zap. Nau. Sem. Len. of Math. Inst., V. E. Steklova Au SSSR 69 pp 77– (1977)
[33] DOI: 10.1002/cpa.3160330104 · Zbl 0405.35056
[34] DOI: 10.1143/PTP.54.687
[35] DOI: 10.1143/PTP.55.356
[36] DOI: 10.1143/PTPS.64.346
[37] DOI: 10.1016/0003-4916(69)90153-5
[38] DOI: 10.1016/0003-4916(71)90162-X
[39] DOI: 10.1103/PhysRevLett.34.391
[40] DOI: 10.1007/BF01215277 · Zbl 0598.76054
[41] Lieb E., Studies in Mathematical Physics: essays in honor of Valentine Bergman pp 269– (1976)
[42] Lin S. P., Finite amplitude side–band stability of a viscous fluid 63 pp 417– (1974) · Zbl 0283.76035
[43] J. L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications, vol J, Dunod, Paris. · Zbl 0197.06701
[44] J. MALLET–Paret and G. R. Sell, Inertial manifolds for reaction–diffusion equations in higher space dimension, IMA preprint 331 (1987); J. Amer. Math. Soc. 1 (1988), to appear. · Zbl 0631.35047
[45] Matano A., Pub. Fac. Sci. Univ. Tokyo 15 pp 401– (1979)
[46] Matano H., Pub. Fac. Sci. Univ. Tokyo 29 pp 401– (1982)
[47] Manneville P., Liapunov exponents for the Kuramoto Sivashinsky model (1984)
[48] DOI: 10.1016/0094-5765(77)90097-2 · Zbl 0427.76048
[49] Nlcolaenko B., C. R. Acad. Sci. Paris 298 pp 23– (1984)
[50] DOI: 10.1016/0167-2789(85)90056-9 · Zbl 0592.35013
[51] B. NlCOLAENKO, B. Scheurer, R. Temam, Inertial manifold for the Cahn-Hilliard model of phase transition, Proceeding of the Dundee Conference, June (1986) (to appear).
[52] Nicolaenko B., Low-dimensional behavior of the pattern formation Cahn–Hilliard equation. Trends in the Theory and practice of Nonlinear Analysis (1985) · Zbl 0581.35041
[53] Novick-Cohen A., Nonlinear aspects of the Cahn–Hilliard equation (1984)
[54] Novick-Cohen A., On the solidification front of a dilute binary alloy: thermal diffusivity effects and breathing solutions (1985) · Zbl 0641.76088
[55] Palis J., Geometric theory of dynamical systems (1983) · Zbl 0528.58005
[56] Y. Pomeau, A. PuMiR AND P. Pelce, Intrinsic stochasticity with many degrees of freedom, Preprint CEA-SPT, Saclay, France.
[57] A. Pumir, Structures localisées et turbulence, Thèse de 3e Cycle, Paris, 1982.
[58] Pumir A., Statistical properties of an equation describing fluid interfaces (1982)
[59] Pumir A., On an equation describing wrinkled flame fronts (1984)
[60] DOI: 10.1017/S0022112083002943 · Zbl 0525.76016
[61] Quinn F., AMS Proc. Symp, in Pure Math pp 213– (1970)
[62] Reid M., Methods of modern mathematical physics (1978)
[63] DOI: 10.1016/0001-8708(82)90051-2 · Zbl 0501.10047
[64] C. A. Rogers, Hausdorff measures, CUP. (1970).
[65] DOI: 10.1080/03605307908820096 · Zbl 0462.35016
[66] DOI: 10.1016/0094-5765(77)90096-0 · Zbl 0427.76047
[67] DOI: 10.1137/0139007 · Zbl 0464.76055
[68] DOI: 10.1143/PTP.63.2112
[69] E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, Preprint, ICASE (1984). · Zbl 0606.35073
[70] Temam R., Attractors for Navier–Stokes equations,, in Séminaire du Collège de France (1985) · Zbl 0572.35083
[71] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1988) · Zbl 0662.35001
[72] DOI: 10.2307/2374041 · Zbl 0355.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.