×

zbMATH — the first resource for mathematics

A discrete adjoint framework for trailing-edge noise minimization via porous material. (English) Zbl 1410.76419
Summary: A discrete adjoint framework on the basis of algorithmic differentiation (AD) is developed for trailing-edge noise minimization. Turbulent flow through porous media is modeled based on the conservative transport equations filtered by a local volume-averaging method in which the effect of the porous media is modeled as viscous source terms. This framework is applied to identify the optimal distribution of porous material of a flat plate with a porous trailing edge in subsonic flow resolved with a high resolution large-eddy simulation (LES) method. The AD-based noise adjoint is shown to be highly accurate and allows for efficient evaluation of the entire design sensitivity vector in one stroke, at a cost comparable to that of a single primal LES simulation. Noise minimization is performed to determine the optimal distribution of the design variables that govern the porosity and permeability of the trailing edge. The optimal design obtained is found to attain a maximum noise reduction of 1 dB from a flat plate with solid trailing edge and 3 dB from the baseline design with a linear porosity variation, respectively. Comparison of noise spectra reveals that the optimization has little effect on the broadband noise component compared to its baseline level. The design space of this optimization problem is also shown to be multi-modal.

MSC:
76Q05 Hydro- and aero-acoustics
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76S05 Flows in porous media; filtration; seepage
Software:
TAPENADE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lockard, D. P.; Lilley, G. M., The airframe noise reduction challenge, NASA/TM-2004-213013, (2004), NASA
[2] Howe, M. S., A review of the theory of trailing edge noise, J Sound Vib, 61, 3, 437-465, (1978) · Zbl 0399.76076
[3] Manoha, E.; Troff, B.; Sagaut, P., Trailing-edge noise prediction using large-eddy simulation and acoustic analogy, J Aircraft, 38, 4, 575-583, (2000)
[4] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog Aerosp Sci, 40, 345-416, (2004)
[5] Jones, B. R.; Crossley, W. A.; Lyrintzis, A. S., Aerodynamic and aeroacoustic optimization of rotorcraft airfoils via a parallel genetic algorithm, J Aircraft, 37, 6, 1088-1096, (2000)
[6] Rumpfkeil, M. P.; Zingg, D. W., A hybrid algorithm for far-field noise minimization, Comput Fluids, 39, 9, 1516-1528, (2010) · Zbl 1245.76139
[7] Zhou, B. Y.; Albring, T.; Gauger, N. R.; Ilario, C. R.; Economon, T. D.; Alonso, J. J., An efficient unsteady aerodynamic and aeroacoustic design framework using discrete adjoint, AIAA-2016-3369, (2016), 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
[8] Economon, T. D.; Palacios, F.; Alonso, J. J., A coupled-adjoint method for aerodynamic and aeroacoustic optimization, AIAA-2012-5598, (2012), 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
[9] Marsden, A. L.; Wang, M.; Dennis, J. E.; Moin, P., Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation, J Fluid Mech, 572, 1, 13-36, (2007) · Zbl 1145.76044
[10] Koh, S. R.; Schröder, W.; Meinke, M., Airframe-noise reduction by suppressing near-wall turbulent structures, AIAA-2011-2904, (2011), 17th AIAA/CEAS Aeroacoustics Conference
[11] Koh, S. R.; Schröder, W.; Meinke, M., Sound generation control by fluid bleeding, AIAA-2009-3225, (2009), 15th AIAA/CEAS Aeroacoustics Conference
[12] Schulze, J.; Sesterhenn, J., Optimal distribution of porous media to reduce trailing edge noise, Comput Fluids, 78, 20, 41-53, (2013) · Zbl 1284.76359
[13] Choudhari, M.; Khorrami, M. R., Computational study of porous treatments for altering flap side-edge flow field, AIAA-2003-3113, (2003), 9th AIAA/CEAS Aeroacoustics Conference and Exhibit
[14] Geyer, T.; Sarradj, E.; Fritzsche, C., Measurement of the noise generation at the trailing edge of porous airfoils, Exp Fluids, 48, 291-308, (2010)
[15] Herr, M.; Rossignol, K.; Delfs, J.; Mößner, M.; Lippitz, N., Specification of porous materials for low-noise trailing-edge applications, AIAA-2014-3041, (2003), 20th AIAA/CEAS Aeroacoustics Conference
[16] Jameson, A., Aerodynamic design via control theory, J Sci Comput, 3, 3, 233-260, (1988) · Zbl 0676.76055
[17] Pironneau, O., On optimum design in fluid mechanics, J Fluid Mech, 64, 1, 97-110, (1974) · Zbl 0281.76020
[18] Lyu, Z.; Martins, J. R.R. A., Aerodynamic design optimization studies of a blended-wing-body aicraft, J Aircraft, 51, 5, 1604-1617, (2014)
[19] Kenway, G. K.W.; Martins, J. R.R. A., Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration, J Aircraft, 51, 1, 144-160, (2014)
[20] Mani, K.; Mavriplis, D. J., Unsteady discrete adjoint formfor two-dimensional flow problems with deforming meshes, J Aircraft, 46, 6, 1351-1364, (2008)
[21] Nielsen, E.; Diskin, B., Discret adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids, AIAA-2012-0554, (2012), 50th AIAA Aerospace Sciences Meeting and Exhibit
[22] Economon, T. D.; Palacios, F.; Alonso, J. J., An unsteady continuous adjoint approach for aerodynamic design on dynamic meshes, AIAA-2014-2300, (2014), 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
[23] S. Collis, K. G.; Heinkenschloss, M., Optimal transpiration boundary control for aeroacoustics, AIAA J, 41, 7, 1257-1270, (2003)
[24] Fabiano, E.; Mishra, A.; Mavriplis, D. J.; Mani, K., Time-dependent aero-acoustic adjoint-based shape optimization of helicopter rotors in forward flight, AIAA-2016-1910, (2016), 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
[25] Kim, J.; Bodony, D. J.; Freund, J., Adjoint-based control of loud events in a turbulent jet, J Fluid Mech, 741, 28-59, (2014)
[26] Fosas de Pando, M.; Schmid, P.; Sipp, D., On the receptivity of aerofoil tonal noise: an adjoint analysis, J Fluid Mech, 812, 771-791, (2017) · Zbl 1383.76417
[27] Vishnampet, R.; Bodony, D. J.; Freund, J. B., A practical discrete-adjoint method for high-fidelity compressible turbulence simulations, J Comput Phys, 285, 173-192, (2015) · Zbl 1351.76190
[28] Griewank, A.; Walther, A., Evaluating derivatives: principles and techniques of algorithmic differentiation, Other titles in applied mathematics, (2008), SIAM · Zbl 1159.65026
[29] Naumann, U., The art of differentiating computer programs, (2012), SIAM · Zbl 1275.65015
[30] Hovland, P.; Mohammadi, B.; Bischof, C., Automatic differentiation and Navier-Stokes computations, Comput Methods Opt Des Control, 24, 265-284, (1998) · Zbl 1041.76550
[31] Gauger, N. R.; Walther, A.; Moldenhauer, C.; Widhalm, M., Automatic differentiation of an entire design chain for aerodynamic shape optimization, Notes Numer Fluid Mech Multidisc Des, 96, 454-461, (2007) · Zbl 1409.76126
[32] Nemili, A.; Özkaya, E.; Gauger, N. R.; Kramer, F.; Höll, T.; Thiele, F., Optimal design of active flow control for a complex high-lift configuration, AIAA-2014-2515, (2014), 7th AIAA Flow Control Conference
[33] Whitaker, S., Advances in theory of fluid motion in porous media, Ind Eng Chem, 61, 14-28, (1969)
[34] Liu, Q.; Vasilyev, O. V., A Brinkman penalization method for compressible flows in complex geometries, J Comput Phys, 227, 946-966, (2007) · Zbl 1388.76259
[35] Whitaker, S., The Forchheimer equation: a theoretical development, Transp Porous Med, 25, 27-61, (1996)
[36] Ben Clennel, M., Tortuosity: A guide through the maze, (Lovell, M. A.; Harvey, P. K., Development in petrophysics, 122, (1997), The Geological Society London), 299-344
[37] Macdonald, I. F.; El-Sayed, M. S.; Mow, K.; Dullien, F., Flow through porous media-the ergun equation revisited, Ind Eng Chem Fun, 18, 3, 199-208, (1979)
[38] Mößner, M.; Radespiel, R., Modelling of turbulent flow over porous media using a volume averaging approach and a Reynolds stress model, Comput Fluids, 108, 25-42, (2015) · Zbl 1390.76199
[39] Fureby, C.; Grinstein, F., Monotonically integrated large eddy simulation of free shear flows, AIAA J, 37, 544-556, (1999)
[40] Breugem, W. P.; Boersma, B. J.; Uittenbogaard, R. E., The influence of wall permeability on turbulent channel flow, J Fluid Mech, 562, 35-72, (2006) · Zbl 1157.76332
[41] Meinke, M.; Schröder, W.; Krause, E.; Rister, T., A comparison of second- and sixth-order methods for large-eddy simulations, Comput Fluids, 31, 4, 695-718, (2002) · Zbl 1027.76025
[42] Koh, S. R.; Meinke, M.; Schröder, W., Numerical analysis of the impact of permeability on trailing-edge noise, J Sound Vib, 421, 348-376, (2018)
[43] König, D.; Koh, S. R.; Meinke, M.; Schröder, W., Two-step simulation of slat noise, Comput Fluids, 39, 512-534, (2009) · Zbl 1242.76308
[44] Koh, S. R.; Meinke, M.; Schröder, W., Impact of multi-species gas injection on trailing-edge noise, Comput Fluids, 75, 72-85, (2013) · Zbl 1277.76094
[45] Hascoet, L.; Pascual, V., The tapenade automatic differentiation tool: principles, model and specification, ACM Trans Math Softw, 39, 3, (2013) · Zbl 1295.65026
[46] Koh, S.; Meinke, M.; Schröder, W.; Zhou, B. Y.; Gauger, N., Impact of permeable surface on trailing-edge noise at varying lift, AIAA-2017-3497, (2017), 23rd AIAA/CEAS Aeroacoustics Conference
[47] Roger, M.; Moreau, S.; Guedel, A., Vortex-shedding noise and potential-interaction noise modeling by a reversed sears problem, AIAA-2006-2607, (2006), 12th AIAA/CEAS Aeroacoustics Conference
[48] Ewert, R.; Schröder, W., Acoustic perturbation equations based on flow decomposition via source filtering, J Comput Phys, 188, 365-398, (2003) · Zbl 1022.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.