×

An examination of evaluation algorithms for the RBF method. (English) Zbl 1403.65010

Summary: Radial Basis Function (RBF) methods are important tools for scattered data interpolation and for the solution of PDEs in complexly shaped domains. Several approaches for the evaluation of RBF methods are known. To date, the most noteworthy methods are solving a linear system in the standard RBF basis using both double and extended precision floating point arithmetic and two approaches that make a change of basis for the purpose of obtaining a better conditioned linear system. In this work the approaches are compared and contrasted for the purpose of illustrating the strengths and weakness of each method as well as to give insight into the application of each approach.

MSC:

65D10 Numerical smoothing, curve fitting
65G99 Error analysis and interval analysis
41A30 Approximation by other special function classes
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] GPUREC: supporting high precision on graphics processors. 〈https://code.google.com/p/gpuprec/〉.
[2] Advanpix. Multiprecision computing toolbox for Matlab, version 3.9.9 for 64-bit Linux. 〈http://www.advanpix.com/〉.
[3] Buhmann, M. D., Radial basis functions, (2003), Cambridge University Press Cambridge, UK · Zbl 1038.41001
[4] Fasshauer, G.; McCourt, M., Stable evaluation of Gaussian RBF interpolants, SIAM J Scient Comput, 34, 737-762, (2012)
[5] Fasshauer, G. E., Meshfree approximation methods with MATLAB, (2007), World Scientific Singapore · Zbl 1123.65001
[6] Fasshauer, G. E.; McCourt, M., Kernel-based approximation methods using MATLAB, (2015), World Scientific Singapore
[7] Fornberg, B.; Larsson, E.; Flyer, N., Stable computations with Gaussian radial basis functions, SIAM J Sci Comput, 33, 869-892, (2011) · Zbl 1227.65018
[8] Franke, R., Scattered data interpolationtests of some methods, Math Comput, 181-200, (1982) · Zbl 0476.65005
[9] Guttman, L., Enlargement methods for computing the matrix inverse, Ann Math Stat, 17, 3, 336-343, (1946) · Zbl 0061.27203
[10] Henderson, H. V.; Searle, S. R., On deriving the inverse of a sum of matrices, SIAM Rev, 23, 2, 53-60, (1981) · Zbl 0451.15005
[11] Huang, C.-S.; Leeb, C.-F.; Cheng, A. H.-D., Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Eng Anal Bound Elem, 31, 614-623, (2007) · Zbl 1195.65176
[12] Kansa, E. J., Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics isurface approximations and partial derivative estimates, Comput Math Appl, 19, 8/9, 127-145, (1990) · Zbl 0692.76003
[13] Larsson E. A MATLAB implementation of the RBF-QR method. 〈http://www.it.uu.se/research/scicomp/software/rbf_qr〉.
[14] McCourt M. GaussQR: Stable Gaussian computation. 〈http://math.iit.edu/ mccomic/gaussqr/〉.
[15] Mercer, J., Functions of positive and negative type, and their connection with the theory of integral equations, Phil Trans R Soc Lond Ser A Pap Math Phys Character, 209, 415-446, (1909) · JFM 40.0408.02
[16] Muller, J., Handbook of floating point arithemetic, (2010), Birkhauser Boston, MA, USA
[17] Niederreiter, H., Random number generation and quasi-Monte Carlo methods, (1992), CBMS-NSF, SIAM Philadelphia, PA, USA · Zbl 0761.65002
[18] Piegorsch, W.; Casella, G., The early use of matrix diagonal increments in statistical problems, SIAM Rev, 31, 428-434, (1989) · Zbl 0686.65013
[19] Rasmussen, C. E.; Williams, C. K.I., Gaussian processes for machine learning, (2006), MIT Press Boston, MA, USA · Zbl 1177.68165
[20] Sarra SA. A Matlab radial basis function toolkit with symmetry exploitation, regularization, and extended precision. 〈http://www.scottsarra.org/rbf/rbf.html〉.
[21] Sarra, S. A., Radial basis function approximation methods with extended precision floating point arithmetic, Eng Anal Bound Elem, 35, 68-76, (2011) · Zbl 1259.65173
[22] Sarra, S. A., Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation, Eng Anal Bound Elem, 44, 76-86, (2014) · Zbl 1297.65032
[23] Sarra, S. A., The MATLAB radial basis function toolkit, J Open Res Softw, (2016)
[24] Sarra, S. A., Radial basis function methods - the case of symmetric domains, Numer Methods Partial Differential Equations, (2016)
[25] Sarra, S. A.; Kansa, E. J., Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations, Adv Comput Mech, 2, (2009)
[26] Sarra, S. A.; Sturgill, D., A random variable shape parameter strategy for radial basis function approximation methods, Eng Anal Bound Elem, 33, 1239-1245, (2009) · Zbl 1244.65192
[27] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv Comput Math, 3, 251-264, (1995) · Zbl 0861.65007
[28] Stewart, G., Afternotes on numerical analysis, (1996), SIAM Philadelphia, PA, USA · Zbl 0844.65002
[29] Wendland, H., Scattered data approximation, (2005), Cambridge University Press Cambridge, UK · Zbl 1075.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.