zbMATH — the first resource for mathematics

Measuring sovereign risk spillovers and assessing the role of transmission channels: a spatial econometrics approach. (English) Zbl 1401.91489
Summary: We contribute to the literature on international risk spillovers by developing a unified framework based on spatial econometrics that enables us to address the following questions: (i) what are the effective transmission channels – real linkages and informational channels – of international risk spillovers across countries and/or regions, (ii) what are the most dominant ones, and (iii) which countries are most at risk for their environment and which are suffering the most from international exposure. Our analysis, based on 41 advanced and emerging economies from 2008Q1 to 2012Q4, shows that among the considered channels for explaining international spillovers of sovereign bond spreads, the informational channel is of utmost importance. Our results challenge previous findings from the literature in which the empirical strategy did not accommodate altogether important features of country spillovers, such as the co-existence of multiple transmission channels in the presence of contemporaneous and time-lagged interactions. Ultimately, our stress-testing analysis reveals important insights on countries prone either to international spillovers, international exposure or both at the regional and the worldwide level.
91B82 Statistical methods; economic indices and measures
91B30 Risk theory, insurance (MSC2010)
91B72 Spatial models in economics
Arc_Mat; dtw
Full Text: DOI
[1] Acemoglu, D.; Carvalho, V. M.; Ozdaglar, A.; Tahbar-Salehi, A., The network origins of aggregate fluctuations, Econometrica, 80, 1977-2016, (2012) · Zbl 1274.91317
[2] Acemoglu, D.; Ozdaglar, A.; Tahbaz-Salehi, A., Systemic risk and stability in financial networks, Am. Econ. Rev., 105, 2, 564-608, (2015)
[3] Acharya, V. V.; Heje Pederson, L.; Philippon, T.; Richardson, M., Measuring systemic risk, Rev. Financ. Stud., 30, 1, 2-47, (2017)
[4] Adrian, T.; Brunnermeier, M. K., Covar, Am. Econ. Rev., 106, 7, 1705-1741, (2016)
[5] Aizenman, J.; Jinjarak, Y.; Park, D., Capital flows and economic growth in the era of financial integration and crisis, 1990-2010, Open Econ. Rev., 24, 3, 371-396, (2013)
[6] Aizenman, J.; Jinjarak, Y.; Park, D., Fundamentals and sovereign risk of emerging markets, Working Paper, 18963, (2013), National Bureau of Economic Research
[7] Alessandrini, P.; Fratianni, M.; Hughes Hallett, A.; Presbitero, A. F., External imbalances and fiscal fragility in the euro area, Open Econ. Rev., 25, 1, 3-34, (2014)
[8] Allen, F.; Babus, A., Networks in finance, The Network Challenge: Strategy, Profit, and Risk in an Interlinked, 367-382, (2009), Wharton School Publishing Philadelphia, PA, USA
[9] Allen, F.; Gale, D., Financial contagion, J. Polit. Econ., 108, 1, 1-33, (2000)
[10] Alpanda, S.; Aysun, U., International transmission of financial shocks in an estimated DSGE model, J. Int. Money Finance, 47, C, 21-55, (2014)
[11] Anselin, L., Spatial econometrics: methods and models, vol. 4, (1988), Springer Netherlands
[12] Anselin, L.; Bera, A., Spatial dependence in linear regression models with an application to spatial econometrics, (Ullah, A.; Giles, D., Handbook of Applied Economics Statistics, (1998), Marcel Dekker New York), 237-289
[13] Anselin, L.; Le Gallo, J.; Jayet, H., Spatial panel econometrics, (Matyas, L.; Sevestre, P., The Econometrics of Panel Data, (2008), Kluwer Academic Publishers Dordrecht)
[14] Antonakakis, N.; Vergos, K., Sovereign bond yield spillovers in the euro zone during the financial and debt crisis, J. Int. Financial Markets, Inst. Money, 26, 258-272, (2013)
[15] Aquaro, M.; Bailey, N.; Pesaran, H. M., Quasi maximum likelihood estimation of spatial models with heterogeneous coefficients, CESIFO Working Paper, 5428, (2015)
[16] Arghyrou, M. G.; Kontonikas, A., The EMU sovereign-debt crisis: fundamentals, expectations and contagion, J. Int. Financ. Markets, Inst. Money, 22, 4, 658-677, (2012)
[17] Attinasi, M.-G.; Checherita-Westphal, C.; Nickel, C., What explains the surge in euro area sovereign spreads during the financial crisis of 2007-09?, Working Paper Series, 1131, (2009), European Central Bank
[18] Bae, K.; Karolyi, A.; Stulz, R., A new approach to measuring financial contagion, Rev. Financ. Stud., 16, 717-763, (2003)
[19] Battiston, S.; Caldarelli, G.; D’Errico, M.; Gurciullo, S., Leveraging the network: a stress-test framework based on debtrank, Stat. Risk Model., 33, 3-4, 117-138, (2017) · Zbl 1414.91436
[20] Battiston, S.; Delli Gatti, D.; Gallegati, M.; Greenwald, B.; Stiglitz, J., Liaisons dangereuses: increasing connectivity, risk sharing, and systemic risk, J. Econ. Dyn. Control, 36, 1121-1141, (2012) · Zbl 1345.91089
[21] Baxter, M., International trade and business cycles, (Grossman, G.; Rogoff, K., Handbook of International Economics, (1995), North Holland Amsterdam)
[22] Beine, M.; Cosma, A.; Vermeulen, R., The dark side of global integration: increasing tail dependence, J. Banking Finance, 34, 1, 184-192, (2010)
[23] Beirne, J.; Fratzscher, M., The pricing of sovereign risk and contagion during the European sovereign debt crisis, J Int Money Finance, 34, 60-82, (2013)
[24] Bekaert, G.; Harvey, C. R.; Ng, A., Market integration and contagion, J. Bus., 78, 1, 39-70, (2005)
[25] Bernoth, K.; Erdogan, B., Sovereign bond yield spreads: a time-varying coefficient approach, J. Int. Money Finance, 31, 639-656, (2012)
[26] Bisias, D.; Flood, M.; Lo, A. W.; Valavanis, S., A survey of systemic risk analytics, Annu. Rev. Financ. Econ., 4, 255-296, (2012)
[27] Blasques, F.; Koopman, S. J.; Lucas, A.; Schaumburg, J., Spillover dynamics for systemic risk measurement using spatial financial time series models, J. Econom., 195, 2, 211-223, (2016) · Zbl 1443.62331
[28] Blau, P. M., Presidential address: parameters of social structure, Am. Sociol. Rev., 39, 5, 615-635, (1974)
[29] (Bordo, M. D.; M., T. A.; Williamson, J. G., Globalization in Historical Perspective, (1999), University of Chicago Press Chicago)
[30] Bostanci, G.; Yilmaz, K., How connected is the global sovereign credit risk network?, Working Paper, 1515, (2015), Koç University-TUSIAD Economic Research Forum
[31] Bramoullé, Y.; Djebbari, H.; Fortin, B., Identification of peer effects through social networks, J. Econom., 150, 1, 41-55, (2009) · Zbl 1429.91254
[32] Broto, C.; Pérez-Quiros, G., Disentangling contagion among sovereign CDS spreads during the European debt crisis, J. Empir. Finance, 32, 165-179, (2015)
[33] Brownlees, C. T.; Engle, R. F., SRISK: A conditional capital shortfall measure of systemic risk, Rev. Financ. Stud., 30, 48-79, (2017)
[34] Burt, R. S., Studying status/role-sets as ersatz network positions in mass surveys, Sociol. Methods Res., 9, 3, 313-337, (1981)
[35] Calvò-Armengol, A.; Patacchini, E.; Zenou, Y., Peer effects and social networks in education, Rev. Econ. Stud., 76, 1239-1267, (2009) · Zbl 1187.91163
[36] Candelon, B.; Carare, A.; Miao, K., Revisiting the new normal hypothesis, J Int Money Finance, 66, Suppl. C, 5-31, (2016)
[37] Centola, D., An experimental study of homophily in the adoption of health behavior, Science, 334, 6060, 1269-1272, (2011)
[38] Christiano, L. J.; Eichenbaum, M.; Evans, C. L., Nominal rigidities and the dynamic effects of a shock to monetary policy, J. Polit. Econ., 113, 1, 1-45, (2005)
[39] Christiano, L. J.; Motto, R.; Rostagno, M., Risk shocks, Am. Econ. Rev., 104, 1, 27-65, (2014)
[40] Cipriani, M.; Guarino, A.; Guazzarotti, G.; Tagliati, F.; Fischer, S., Informational contagion in the laboratory, Staff Reports, (2015), Federal Reserve Bank of New York
[41] Codogno, L.; Favero, C.; Missale, A., Yield spreads on EMU government bonds, Econ. Policy, 18, 37, 503-532, (2003)
[42] Coudert, V.; Gex, M., Credit default swap and bond markets: which leads the other?, Financ. Stab. Rev., 14, 161-167, (2010)
[43] Csonto, B.; Ivaschenko, I. V., Determinants of sovereign bond spreads in emerging markets : local fundamentals and global factors vs. ever-changing misalignments, Technical Report, (2013), International Monetary Fund
[44] Dagum, E. B.; Cholette, P. A., Benchmarking, temporal distribution, and reconciliation methods for time series, (2006), Springer · Zbl 1107.62087
[45] Dasgupta, A.; Leon-Gonzalez, R.; Shortland, A., Regionality revisited: an examination of the direction of spread of currency crises, J. Int. Money Finance, 30, 5, 831-848, (2011)
[46] Davis, S.; Presno, I., Capital controls as an instrument of monetary policy, Working Paper, 171, (2014), Federal Reserve Bank of Dallas
[47] De Grauwe, P.; Ji, Y., Self-fulfilling crises in the eurozone: an empirical test, J. Int. Money Finance, 34, 15-36, (2013)
[48] De Gregorio, J.; Valdés, R. O., Crisis transmission: evidence from the debt, tequila, and Asian flu crises, World Bank Econ. Rev., 15, 2, 289-314, (2001)
[49] De Santis, R. A., The euro area sovereign debt crisis: safe haven, credit rating agencies and the spread of the fever from Greece, Ireland and Portugal, Working Paper Series, (2012), European Central Bank
[50] De Walque, G.; Lejeune, T.; Rychalovska, Y.; Wouters, R., An estimated two-country EA-US model with limited exchange rate pass-through, Working Paper Research, 317, (2017), National Bank of Belgium
[51] Debarsy, N.; Ertur, C., Testing for spatial autocorrelation in a fixed effects panel data model, Reg. Sci. Urban Econ., 40, 453-470, (2010)
[52] Debarsy, N.; Ertur, C.; LeSage, J. P., Interpreting dynamic space-time panel data models, Stat. Methodol, 9, 158-171, (2012) · Zbl 1248.62167
[53] Dedola, L.; Karadi, P.; Lombardo, G., Global implications of national unconventional policies, J. Monet. Econ., 60, 1, 66-85, (2013)
[54] Di Cesare, A.; Grande, G.; Manna, M.; Taboga, M., Recent estimates of sovereign risk premia for euro-area countries, Occasional Paper, 128, (2012), Bank of Italy
[55] Diebold, F. X.; Yilmaz, K., On the network topology of variance decompositions: measuring the connectedness of financial firms, J. Econom., 182, 1, 119-134, (2014) · Zbl 1311.91196
[56] Diebold, F. X.; Yilmaz, K., Financial and macroeconomic connectedness: A network approach to measurement and monitoring, (2015), Oxford University Press
[57] Dungey, M.; Fry, R.; Gonzalez-Hermosillo, B.; Martin, V., Contagion: understanding how it spreads, Quant. Finance, 1, 5, 9-24, (2005)
[58] Eichengreen, B.; Rose, A. K.; Wyplosz, C., Contagious currency crises, Working Paper, 5681, (1996), National Bureau of Economic Research
[59] Elliott, M.; Golub, B.; Jackson, M. O., Financial networks and contagion, Am. Econ. Rev., 104, 10, 3115-3153, (2014)
[60] Faia, E., Finance and international business cycles, J. Monet. Econ., 54, 4, 1018-1034, (2007)
[61] Faini, R., Fiscal policy and interest rates in Europe, Econ. Policy, 21, 47, 443-489, (2006)
[62] Favero, C.; Missale, A., Sovereign spreads in the eurozone: which prospects for a eurobond?, Econ. Policy, 27, 70, 231-273, (2012)
[63] Favero, C.; Pagano, M.; von Thadden, E.-L., How does liquidity affect government bond yields?, J. Financ. Quant. Anal., 45, 1, 107-134, (2010)
[64] Favero, C. A., Modelling and forecasting government bond spreads in the euro area: A GVAR model, J Econom, 177, 343-356, (2013) · Zbl 1288.91196
[65] Forbes, K.; Rigobon, R., Measuring contagion: conceptual and empirical issues, International Financial Contagion, 43-66, (2001), Springer
[66] Forbes, K. J.; Rigobon, R., No contagion, only interdependence: measuring stock market comovements, J Finance, 57, 5, 2223-2261, (2002)
[67] Forbes, K. J.; Warnock, F. E., Capital flow waves: surges, stops, flight, and retrenchment, J. Int. Econ., 88, 2, 235-251, (2012)
[68] Frankel, J. A.; Rose, A. K., The endogeneity of the optimum currency area criteria, Working Paper, 5700, (1996), National Bureau of Economic Research
[69] Fratzscher, M., Capital flows, push versus pull factors and the global financial crisis, J. Int. Econ., 88, 2, 341-356, (2012)
[70] Gai, P.; Kapadia, S., Contagion in financial networks, Proc. R. Soc. London A, 466, 2120, 2401-2423, (2010) · Zbl 1193.91192
[71] Galí, J.; Monacelli, T., Monetary policy and exchange rate volatility in a small open economy, Rev. Econ. Stud., 72, 3, 707-734, (2005) · Zbl 1136.91535
[72] Georgiadis, G.; Jančokovà, M., Financial globalisation, monetary policy spillovers and macro-modelling: tales from 1001 shocks, Working Paper, 314, (2017), Federal Reserve Bank of Dallas
[73] Gerlach, S.; Schulz, A.; Wolff, G. B., Banking and sovereign risk in the euro area, Discussion Paper Series 1: Economic Studies, 09, (2010), Deutsche Bundesbank, Research Centre
[74] Gertler, M.; Karadi, P., A model of unconventional monetary policy, J. Monet. Econ., 58, 1, 17-34, (2011)
[75] Ghironi, F., Towards new open economy macroeconometrics, Staff Reports, 100, (2000), Federal Reserve Bank of New York
[76] Giordano, R.; Pericoli, M.; Tommasino, P., Pure or wake-up-call contagion? another look at the EMU sovereign debt crisis, Int. Finance, 16, 2, 131-160, (2013)
[77] Giorgino, T., Computing and visualizing dynamic time warping alignments in r: the dtw package, J. Stat. Softw., Articles, 31, 7, 1-24, (2009)
[78] Gnabo, J.-Y.; Scholtes, N., Assessing the role of interbank network structure in business and financial cycle analysis, Working Paper Research, 307, (2016), National Bank of Belgium
[79] Goldstein, M.; Woglom, G., Market-based fiscal discipline in monetary unions; evidence from the U.S. municipal bond market, Working Papers, 91/89, (1991), International Monetary Fund
[80] Grossman, G. M.; Helpman, E., Growth, trade, and inequality, Working Paper, 20502, (2014), National Bureau of Economic Research
[81] von Hagen, J.; Schuknecht, L.; Wolswijk, G., Government bond risk premiums in the EU revisited: the impact of the financial crisis, Eur. J. Polit. Econ., 27, 1, 36-43, (2011)
[82] Hazir, C. S.; LeSage, J.; Autant-Bernard, C., The role of R&D collaboration networks on regional innovation performance, Papers in Regional Science, (2016)
[83] Hernández, L. F.; Valdés, R. O., What drives contagion: trade, neighborhood of financial links?, Int. Rev. Financ. Anal., 10, 3, 203-218, (2001)
[84] Hondroyiannis, G.; Kelejian, H. H.; Tavlas, G. S., Government bond spread contagion among the European countries, Technical Report, 6, (2010), Bank of Greece
[85] Hüser, A.-C., Too interconnected to fail: A survey of the interbank networks literature, Working Paper, 91, (2015), Research Center SAFE, Goethe University Frankfurt
[86] Jackson, M. O., Social and economic network, (2010), Princeton University Press Princeton
[87] Justiniano, A.; Preston, B., Can structural small open-economy models account for the influence of foreign disturbances?, J. Int. Econ., 81, 1, 61-74, (2010)
[88] Kaminsky, G. L.; Reinhart, C. M., On crises, contagion, and confusion, J. Int. Econ., 51, 1, 145-168, (2000)
[89] Karolyi, G. A., Does international financial contagion really exist?, Int. Finance, 6, 2, 179-199, (2003)
[90] Kelejian, H. H.; Prucha, I. R., A generalized spatial two stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real Estate Finance Econ., 17, 99-121, (1998)
[91] Kilponen, J.; Laakkonen, H.; Vilmunen, J., Sovereign risk, European crisis-resolution policies, and bond spreads, Int. J. Central Banking, 11, 2, 285-323, (2015)
[92] King, M. A.; Wadhwani, S., Transmission of volatility between stock markets, Rev. Financ. Stud., 3, 1, 5-33, (1990)
[93] Kireyev, A.; Leonidov, A., Network effects of international shocks and spillovers, Working Paper, 15/149, (2015), International Monetary Fund
[94] Kodres, L. E.; Hartelius, K.; Kashiwase, K., Emerging market spread compression; Is it real or Is it liquidity?, Working Papers, 08/10, (2008), International Monetary Fund
[95] Kodres, L. E.; Pritsker, M., A rational expectations model of financial contagion, J. Finance, 57, 768-799, (2002)
[96] Kohonen, A., Transmission of government default risk in the eurozone, J Int Money Finance, 47, 71-85, (2014)
[97] König, M.; Robner, D.; Thoenig, M.; Zilibotti, F., Networks in conflict: theory and evidence from the great war of africa, Econometrica, 85, 4, 1093-1132, (2017)
[98] Kumar, M. S.; Jonáš, J.; Hauner, D., Policy credibility and sovereign credit; the case of new EU member states, Working Papers, 07/1, (2007), International Monetary Fund
[99] Laubach, T., New evidence on the interest rate effects of budget deficits and debt, J. Eur. Econ. Assoc., 7, 4, 858-885, (2009)
[100] Lee, L.-F., Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica, 72, 1899-1925, (2004) · Zbl 1142.62312
[101] Lee, L.-F.; Yu, J., Efficient GMM estimation of spatial dynamic panel data models with fixed effects, J. Econ., 180, 174-197, (2014) · Zbl 1293.62193
[102] LeSage, J.; Chih, Y.-Y., A Bayesian spatial panel model with heterogeneous coefficients, Regional Science and Urban Economics, Forthcoming, (2017)
[103] LeSage, J.; Pace, R. K., Introduction to spatial econometrics, (2009), CRC Press · Zbl 1163.91004
[104] Lubik, T.; Schorfheide, F., A Bayesian look at the new open economy macroeconomics, NBER Macroeconomics Annual 2005, 20, 313-382, (2006), National Bureau of Economic Research, Inc
[105] Maltritz, D., Determinants of sovereign yield spreads in the eurozone: a Bayesian approach, J Int Money Finance, 31, 3, 657-672, (2012)
[106] Masson, P. R., Contagion: monsoonal effects, spillovers, and jumps between multiple equilibria, Working Paper, 98/142, (1998), International Monetary Fund
[107] Monfort, A.; Renne, J.-P., Credit and liquidity risks in euro area sovereign yield curves, Working papers, 352, (2011), Banque de France
[108] Newman, M., Networks: an introduction, (2010), Oxford University Press New-York
[109] Obstfeld, M.; Rogoff, K., The mirage of fixed exchange rates, Working Paper, 5191, (1995), National Bureau of Economic Research
[110] Ord, K., Estimation methods for models of spatial interaction, J. Am. Stat. Assoc., 70, 120-126, (1975) · Zbl 0313.62063
[111] Parent, O.; LeSage, J. P., A space-time filter for panel data models containing random effects, Comput. Stat. Data Anal., 55, 475-490, (2011) · Zbl 1247.62240
[112] Parent, O.; LeSage, J. P., Spatial dynamic panel data models with random effects, Reg. Sci. Urban Econ., 42, 727-738, (2012)
[113] Pesaran, H. M.; Schuermann, T.; Weiner, S. M., Modeling regional interdependencies using a global error-correcting macroeconometric model, J. Bus. Econ. Stat., 22, 129-162, (2004)
[114] Poterba, J.; Rueben, K., State fiscal institutions and the U.S. municipal bond market, Fiscal Institutions and Fiscal Performance, 181-208, (1999), National Bureau of Economic Research
[115] Pritsker, M., The channels for financial contagion, (Claessens, S.; Forbes, K. J., International Financial Contagion, (2001), Springer), 67-95
[116] Rabanal, P.; Tuesta, V., Euro-dollar real exchange rate dynamics in an estimated two-country model: an assessment, J. Econ. Dyn. Control, 34, 4, 780-797, (2010) · Zbl 1202.91354
[117] Rajan, R. G., Has financial development made the world riskier?, Working Paper, 11728, (2005), National Bureau of Economic Research
[118] Schwarz, K., Mind the gap: disentangling credit and liquidity in risk spreads, Working Papers, (2017), University of Pennsylvania, Wharton School, Philadelphia, PA
[119] Sims, C. A., Macroeconomics and reality, Econometrica, 48, 1, 1-48, (1980)
[120] Singh, J., Collaborative networks as determinants of knowledge diffusion patterns, Manage. Sci., 51, 5, 756-770, (2005) · Zbl 1232.91586
[121] Smets, F.; Wouters, R., Shocks and frictions in us business cycles: a Bayesian dsge approach, Am. Econ. Rev., 97, 3, 586-606, (2007)
[122] Strahilov, K., The determinants of country risk in eastern European countries. evidence from sovereign bond spreads, Policy Paper, 8, (2006), Bruges European Economic Research
[123] Stulz, R. M., The limits of financial globalization, J. Appl. Corporate Finance, 19, 1, 8-15, (2007)
[124] Yao, W., International business cycles and financial frictions, Staff Working Papers, 12-19, (2012), Bank of Canada
[125] Yu, J.; de Jong, R.; Lee, L.-F., Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and t are large, J. Econom., 146, 1, 118-134, (2008) · Zbl 1418.62549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.