On the planarity of cyclic graphs. (English) Zbl 1393.05091

Summary: We classify all finite groups with planar cyclic graphs. Also, we compute the genus and crosscap number of some families of groups (by knowing that of the cyclic graph of particular proper subgroups in some cases).


05C10 Planar graphs; geometric and topological aspects of graph theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)


Full Text: DOI Euclid


[1] S.J. Baishya, A note on finite \(C\)-tidy groups, Int. J. Group Th. 2 (2013), 9-17. · Zbl 1306.20023
[2] —-, On finite \(C\)-tidy groups, Int. J. Group Th. 2 (2013), 39-41. · Zbl 1306.20023
[3] —-, Some new results on tidy groups, Algebras Groups Geom. 31 (2014), 251-262. · Zbl 1315.20033
[4] W. Bannuscher and G. Tiedt, On a theorem of Deaconescu, Rostock. Math. Kolloq. 47 (1994), 23-26. · Zbl 0804.20018
[5] J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), 656-568. · Zbl 0142.41501
[6] E.D. Bolker, Groups whose elements are of order two or three, Amer. Math. Month. 79 (1972), 1007-1010. · Zbl 0255.20027
[7] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Th. 24 (1978), 24-33. · Zbl 0311.05104
[8] A. Doostabadi and D.G.M. Farrokhi, Embeddings of \((\)proper\()\) power graphs of finite groups, Algebra Discrete Math., to appear. · Zbl 1388.05083
[9] A. Erfanian and D.G.M. Farrokhi, On some classes of tidy groups, Alg. Groups Geom. 25 (2008), 109-114. · Zbl 1216.20027
[10] The GAP Group, GAP-groups, algorithms and programming, Version 4.4.12, http://www.gap-system.org/, 2008.
[11] D.R. Hughes and J.G. Thompson, The \(H_p\)-problem and the structure of \(H_p\)-groups, Pac. J. Math. 9 (1959), 1097-1101. · Zbl 0098.25201
[12] B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin, 1967.
[13] B. Huppert and N. Blackburn, Finite groups, III, Springer-Verlag, Berlin, 1982. · Zbl 0514.20002
[14] K. O’Bryant, D. Patrick, L. Smithline and E. Wepsic, Some facts about cycles and tidy groups, Technical report MS-TR 92-04, Rose-Hulman Institute of Technology, Indiana, 1992.
[15] D. Patrick and E. Wepsic, Cyclicizers, centralizers, and normalizers, Technical report MS-TR 91-05, Rose-Hulman Institute of Technology, Indiana, 1991.
[16] G. Ringel, Map color theorem, Springer-Verlag, New York, 1974. · Zbl 0287.05102
[17] D.J.S. Robinson, A course in the theory of groups, Springer, New York, 1996.
[18] S. Stahl and L.W. Beineke, Blocks and the nonorientable genus of graphs, J. Graph Th. 1 (1977), 75-78. · Zbl 0366.05030
[19] G. Zappa, Partitions and other coverings of groups, Illinois J. Math. 47 (2003), 571-580. · Zbl 1033.20018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.