×

High-dimensional inference for personalized treatment decision. (English) Zbl 1395.62201

Summary: Recent development in statistical methodology for personalized treatment decision has utilized high-dimensional regression to take into account a large number of patients’ covariates and described personalized treatment decision through interactions between treatment and covariates. While a subset of interaction terms can be obtained by existing variable selection methods to indicate relevant covariates for making treatment decision, there often lacks statistical interpretation of the results. This paper proposes an asymptotically unbiased estimator based on Lasso solution for the interaction coefficients. We derive the limiting distribution of the estimator when baseline function of the regression model is unknown and possibly misspecified. Confidence intervals and p-values are derived to infer the effects of the patients’ covariates in making treatment decision. We confirm the accuracy of the proposed method and its robustness against misspecified function in simulation and apply the method to STAR\(^\ast\)D study for major depression disorder.

MSC:

62J05 Linear regression; mixed models
62F35 Robustness and adaptive procedures (parametric inference)
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Bühlmann, P. and S. van de Geer (2011)., Statistics for high-dimensional data – methods, theory and applications. Springer.
[2] Bühlmann, P. and S. van de Geer (2015). High-dimensional inference in misspecified linear models., Electronic Journal of Statistics9, 1449-1473. · Zbl 1327.62420
[3] Chakraborty, B., S. A. Murphy, and V. J. Strecher (2010). Inference for non-regular parameters in optimal dynamic treatment regimes., Statistical Methods in Medical Research19(3), 317-343. · Zbl 1365.62411
[4] Dezeure, R., P. Bühlmann, L. Meier, and N. Meinshausen (2015). High-dimensional inference: Confidence intervals, p-values and r-software hdi., Statistical Science30(4), 533-558. · Zbl 1426.62183
[5] Fava, M., A. J. Rush, M. H. Trivedi, A. A. Nierenberg, M. E. Thase, H. A. Sackeim, F. M. Quitkin, S. Wisniewski, P. W. Lavori, J. F. Rosenbaum, et al. (2003). Background and rationale for the sequenced treatment alternatives to relieve depression (star∗ d) study., Psychiatric Clinics of North America26(2), 457-494.
[6] Goldberg, Y., R. Song, and M. R. Kosorok (2013). Adaptive q-learning., Institute of Mathematical Statistics Collections9, 150-162. · Zbl 1325.62073
[7] Laber, E. B., K. A. Linn, and L. A. Stefanski (2014). Interactive model building for q-learning., Biometrika101, 831-847. · Zbl 1306.62235
[8] Lu, W., H. H. Zhang, and D. Zeng (2013). Variable selection for optimal treatment decision., Statistical Methods in Medical Research22(5), 493-504.
[9] Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable selection with the Lasso., The Annals of Statistics34(3), 1436-1462. · Zbl 1113.62082
[10] Murphy, S. (2003). Optimal dynamic treatment regimes., Journal of The Royal Statistical Society: Series B65, 331-366. · Zbl 1065.62006
[11] Murphy, S. (2005). A generalization error for q-learning., Journal of Machine Learning Research6, 1073-1097. · Zbl 1222.68271
[12] Qian, M. and S. A. Murphy (2011). Performance guarantees for individualized treatment rules., The Annals of Statistics39, 1180-1210. · Zbl 1216.62178
[13] Robins, J., M. A. Hernan, and B. Brumback (2000). Marginal structural models and causal inference in epidemiology., Epidemiology11, 550-560. · Zbl 1078.62523
[14] Rush, A. J., M. Fava, S. R. Wisniewski, P. W. Lavori, M. H. Trivedi, H. A. Sackeim, M. E. Thase, A. A. Nierenberg, F. M. Quitkin, T. M. Kashner, et al. (2004). Sequenced treatment alternatives to relieve depression (star∗ d): rationale and design., Controlled Clinical Trials25(1), 119-142.
[15] Shi, C., A. Fan, R. Song, and W. Lu (2018). High-dimensional a-learning for optimal dynamic treatment regimes., The Annals of Statistics46(3), 925-957. · Zbl 1398.62029
[16] Shi, C., R. Song, and W. Lu (2016). Robust learning for optimal treatment decision with np-dimensionality., Electronic Journal of Statistics10, 2894-2921. · Zbl 1419.62445
[17] Song, R., W. Wang, D. Zeng, and M. R. Kosorok (2015). Penalized q-learning for dynamic treatment regimens., Statistica Sinica25, 901-920. · Zbl 1415.62054
[18] Su, X., C.-L. Tsai, H. Wang, D. M. Nickerson, and B. Li (2009). Subgroup analysis via recursive partitioning., Journal of Machine Learning Research10, 141-158.
[19] Tian, L., A. A. Alizadeh, A. J. Gentles, and R. Tibshirani (2014). A simple method for estimating interactions between a treatment and a large number of covariates., Journal of the American Statistical Association109, 1517-1532. · Zbl 1368.62294
[20] van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymptotically optimal confidence regions and tests for high-dimensional models., The Annals of Statistics42(3), 1166-1202. · Zbl 1305.62259
[21] Watkins, C. J. C. H. and P. Dayan (1992). Q-learning., Machine Learning8, 279-292. · Zbl 0773.68062
[22] Zhang, B., A. A. Tsiatis, M. Davidian, M. Zhang, and E. B. Laber (2012). Estimating optimal treatment regimes from a classification perspective., Stat1, 103-104. · Zbl 1258.62116
[23] Zhang, B., A. A. Tsiatis, E. B. Laber, and M. Davidian (2012). A robust method for estimating optimal treatment regimes., Biometrics68, 1010-1018. · Zbl 1258.62116
[24] Zhang, C. and S. S. Zhang (2014). Confidence intervals for low dimensional parameters in high dimensional linear models., Journal of the Royal Statistical Society. Series B76(1), 217-242. · Zbl 1411.62196
[25] Zhao, Y., D. Zeng, A. J. Rush, and M. R. Kosorok (2012). Estimating individualized treatment rules using outcome weighted learning., Journal of the American Statistical Association107, 1106-1118. · Zbl 1443.62396
[26] Zhao, Y. Q., D. Zeng, E. B. Laber, R. Song, M. Yuan, and M. R. Kosorok (2015). Doubly robust learning for estimating individualized treatment with censored data., Biometrika102, 151-168. · Zbl 1345.62092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.