×

2nd special issue on robust analysis of complex data. (English) Zbl 1464.00017

From the text: When we embarked to invite submissions for this 2nd special issue on robust analysis of complex data, we did so with the following call:
Nowadays we are often confronted with large data sets in high dimensions. These new types of data have led to the emergence and use of complex models such as graphical models, models for complex correlation structures and models for functional data for instance. These complex structures pose many challenges. Specifically, when many measurements on several variables are recorded, it becomes more likely that not all of these measurements are recorded with high accuracy. This may result in data of uneven quality that contains gross errors and other anomalies that need to be taken into account. Therefore, there is a need for robust procedures that can reliably analyze large data sets containing outliers and other data contamination. This special issue will focus mainly on computationally efficient, robust procedures to analyze such complex data sets.
This call resulted in 37 submissions, from which five high quality papers have been selected for inclusion in this special issue. We greatly acknowledge the help of the CSDA co-editors to handle these papers and we thank all anonymous referees for their valuable comments, honest opinions and constructive suggestions.

MSC:

00B15 Collections of articles of miscellaneous specific interest
62-06 Proceedings, conferences, collections, etc. pertaining to statistics
62-08 Computational methods for problems pertaining to statistics

Software:

robNB
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aeberhard, W.; Cantoni, E.; Heritier, S., Saddlepoint tests for accurate and robust inference on overdispersed count data, Comput. Statist. Data Anal., 107, 162-175, (2017) · Zbl 1466.62013
[2] Agostinelli, C.; Locatelli, I.; Marazzi, A.; Yohai, V., Robust estimators of accelerated failure time regression with generalized log-gamma errors, Comput. Statist. Data Anal., 107, 92-106, (2017) · Zbl 1466.62014
[3] Alfons, A.; Croux, C.; Gelper, S., Robust groupwise least angle regression, Comput. Statist. Data Anal., 93, 421-435, (2016) · Zbl 1468.62014
[4] Atkinson, A.; Riani, M.; Torti, F., Robust methods for heteroskedastic regression, Comput. Statist. Data Anal., 104, 209-222, (2016) · Zbl 1466.62022
[5] Bali, J.; Boente, G., Robust estimators under a functional common principal components model, Comput. Statist. Data Anal., x, 1-17, (2017)
[6] Bianco, A.; Spano, P., Robust estimation in partially linear errors-in-variables models, Comput. Statist. Data Anal., 106, 46-64, (2017) · Zbl 1466.62031
[7] Boente, G.; Pardo-Fernández, J., Robust testing for superiority between two regression curves, Comput. Statist. Data Anal., 97, 151-168, (2016) · Zbl 1468.62028
[8] Candes, E.; Tao, T., The Dantzig selector: statistical estimation when p is much larger than n, Ann. Statist., 35, 2313-2351, (2007) · Zbl 1139.62019
[9] Chee, C.; Wang, Y., Nonparametric estimation of species richness using discrete \(k\)-monotone distributions, Comput. Statist. Data Anal., 93, 107-118, (2016) · Zbl 1468.62036
[10] Cheng, C., Exploratory failure time analysis in large scale genomics, Comput. Statist. Data Anal., 95, 192-206, (2016) · Zbl 1468.62038
[11] Chiancone, A.; Forbes, F.; Girard, S., Student sliced inverse regression, Comput. Statist. Data Anal., x, 1-16, (2017) · Zbl 1464.62047
[12] Cook, R., Fisher lecture: dimension reduction in regression, Statist. Sci., 22, 1-26, (2007) · Zbl 1246.62148
[13] Croux, C.; Ronchetti, E.; Salibián-Barrera, M.; Van Aelst, S., Special issue on robust analysis of complex data, Comput. Statist. Data Anal., 65, 1-3, (2013)
[14] Cui, Y.; Leng, C.; Sun, D., Sparse estimation of high-dimensional correlation matrices, Comput. Statist. Data Anal., 93, 390-403, (2016) · Zbl 1468.62044
[15] Dhaene, G.; Zhu, Y., Median-based estimation of dynamic panel models with fixed effects, Comput. Statist. Data Anal., x, 1-26, (2017)
[16] García-Escudero, L. Gordaliza, A.; Greselin, F.; Ingrassia, S.; Mayo-Iscar, A., The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers, Comput. Statist. Data Anal., 99, 131-147, (2016) · Zbl 1468.62060
[17] Gutiérrez, L.; Mena, R.; Ruggiero, M., A time dependent Bayesian nonparametric model for air quality analysis, Comput. Statist. Data Anal., 95, 161-175, (2016) · Zbl 1468.62071
[18] Hämäläinen, W., New upper bounds for tight and fast approximation of fishers exact test in dependency rule mining, Comput. Statist. Data Anal., 93, 469-482, (2016) · Zbl 1468.62072
[19] He, Y.; Zhang, X.; Wang, P.; Zhang, L., High dimensional Gaussian copula graphical model with fdr control, Comput. Statist. Data Anal., x, 1-18, (2017)
[20] Huang, L.; Zhao, J.; Wang, H.; Wang, S., Robust shrinkage estimation and selection for functional multiple linear model through lad loss, Comput. Statist. Data Anal., 103, 384-400, (2016) · Zbl 1466.62103
[21] Kaffine, D.; Davis, G., A multi-row deletion diagnostic for influential observations in small-sample regressions, Comput. Statist. Data Anal., 108, 133-145, (2017) · Zbl 1466.62111
[22] Kirschstein, T.; Liebscher, S.; Porzio, G.; Ragozini, G., Minimum volume peeling: A robust nonparametric estimator of the multivariate mode, Comput. Statist. Data Anal., 93, 456-468, (2016) · Zbl 1468.62102
[23] Leung, A.; Zhang, H.; Zamar, R., Robust regression estimation and inference in the presence of cellwise and casewise contamination, Comput. Statist. Data Anal., 99, 1-11, (2016) · Zbl 1468.62118
[24] Li, Q.; Lian, H.; Zhu, F., Robust closed-form estimators for the integer-valued garch (1,1) model, Comput. Statist. Data Anal., 101, 209-225, (2016) · Zbl 1466.62141
[25] Maronna, R.; Yohai, V., Robust and efficient estimation of multivariate scatter and location, Comput. Statist. Data Anal., 109, 64-75, (2017) · Zbl 1466.62158
[26] Martinez, W.; Gray, J., Noise peeling methods to improve boosting algorithms, Comput. Statist. Data Anal., 93, 483-497, (2016) · Zbl 1468.62135
[27] Maruotti, A.; Punzo, A., Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers, Comput. Statist. Data Anal., x, 1-22, (2017) · Zbl 1464.62128
[28] Moradi Rekabdarkolaee, H.; Boone, E.; Wang, Q., Robust estimation and variable selection in sufficient dimension reduction, Comput. Statist. Data Anal., 108, 146-157, (2016) · Zbl 1466.62182
[29] Mount, D.; Netanyahu, N.; Piatko, C.; Wu, A.; Silverman, R., A practical approximation algorithm for the lts estimator, Comput. Statist. Data Anal., 99, 148-170, (2016) · Zbl 1468.62145
[30] Salibián-Barrera, S.; Van Aelst, S.; Yohai, V., Robust tests for linear regression models based on image-estimates, Comput. Statist. Data Anal., 93, 436-455, (2016) · Zbl 1468.62171
[31] Serfling, R.; Wijesuriya, U., Depth-based nonparametric description of functional data, with emphasis on use of spatial depth, Comput. Statist. Data Anal., 105, 24-45, (2017) · Zbl 1466.62192
[32] Song, J.; Oh, D.; Kang, J., Robust estimation in stochastic frontier models, Comput. Statist. Data Anal., 105, 243-267, (2017) · Zbl 1467.62017
[33] Tarr, G.; Müller, S.; Weber, N., Robust estimation of precision matrices under cellwise contamination, Comput. Statist. Data Anal., 93, 404-420, (2016) · Zbl 1468.62192
[34] Xiang, S.; Yao, W.; Seo, B., Semiparametric mixture: continuous scale mixture approach, Comput. Statist. Data Anal., 103, 413-425, (2016) · Zbl 1466.62218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.