zbMATH — the first resource for mathematics

Parallel solver for shifted systems in a hybrid CPU-GPU framework. (English) Zbl 1395.65006
The authors consider shifted linear systems of equations of the form \((A - \sigma I) x = b\). In this respect they adapt a previous algorithm for shifted Hessenberg systems to a hybrid CPU-GPU setting, by also providing an efficient software implementation for solving many shifted systems. Systematic experiments show the efficiency of the method.
65F05 Direct numerical methods for linear systems and matrix inversion
65Y05 Parallel numerical computation
93A15 Large-scale systems
93B40 Computational methods in systems theory (MSC2010)
93C05 Linear systems in control theory
93C80 Frequency-response methods in control theory
Full Text: DOI
[1] M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, Preconditioned multishift BiCG for \(\mathcal{H}_2\)-optimal model reduction, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 401–424, . · Zbl 1365.65080
[2] K. Ahuja, P. Benner, E. de Sturler, and L. Feng, Recycling BiCGSTAB with an application to parametric model order reduction, SIAM J. Sci. Comput., 37 (2015), pp. S429–S446, . · Zbl 1325.65044
[3] K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang, Recycling BiCG with an application to model reduction, SIAM J. Sci. Comput., 34 (2012), pp. A1925–A1949, . · Zbl 1253.65040
[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999, . · Zbl 0934.65030
[5] A. C. Antoulas, C. A. Beattie, and S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, in Efficieint Modeling and Control of Large-Scale Systems, Springer, Boston, 2010, pp. 3–58. · Zbl 1229.65103
[6] U. Baur, C. Beattie, P. Benner, and S. Gugercin, Interpolatory projection methods for parameterized model reduction, SIAM J. Sci. Comput., 33 (2011), pp. 2489–2518, . · Zbl 1254.93032
[7] U. Baur and P. Benner, Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation, Automatisierungstechnik, 57 (2009), pp. 411–420.
[8] C. Beattie, Z. Drmač, and S. Gugercin, A note on shifted Hessenberg systems and frequency response computation, ACM Trans. Math. Software, 38 (2011), 12. · Zbl 1365.65067
[9] P. Benner, S. Gugercin, and K. Willcox, A Survey of Model Reduction Methods for Parametric Systems, Technical Report MPIMD/13–14, Max Planck Institute, Magdeburg, Germany, 2013. · Zbl 1339.37089
[10] N. Bosner, Z. Bujanović, and Z. Drmač, Efficient generalized Hessenberg form and applications, ACM Trans. Math. Software, 39 (2013), 19.
[11] T. Braconnier and N. J. Higham, Computing the field of values and pseudospectra using the Lanczos method with continuation, BIT, 36 (1996), pp. 422–440. · Zbl 0861.65033
[12] A. Bunse-Gerstner, D. Kubalińska, G. Vossen, and D. Wilczek, \(h_2\)-norm optimal model reduction for large scale discrete dynamical MIMO systems, J. Comput. Appl. Math., 233 (2010), pp. 1202–1216. · Zbl 1178.93032
[13] M. Cosnard and Y. Robert, Complexite de la factorisation QR en parallele, C.R. Acad. Sci. Paris, Sér. I Math., 297 (1983), pp. 137–139. · Zbl 0529.68019
[14] A. Frommer, BiCGStab(\(ℓ\)) for families of shifted linear systems, Computing, 70 (2003), pp. 87–109. · Zbl 1239.65022
[15] A. Frommer and U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 15–26, . · Zbl 0912.65023
[16] S. Gugercin, A. C. Antoulas, and C. A. Beattie, H\textup2 model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–638, . · Zbl 1159.93318
[17] N. Hale, N. J. Higham, and L. N. Trefethen, Computing \(A^{α}\), \(\log(A)\), and related matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505–2523, . · Zbl 1176.65053
[18] D. Hinrichsen and B. Kelb, Spectral value sets: A graphical tool for robustness analysis, Systems Control Lett., 21 (1993), pp. 127–136. · Zbl 0785.93030
[19] T. Kim, Frequency-domain Karhunen-Loeve method and its application to linear dynamic systems, AIAA J., 36 (1998), pp. 2117–2123.
[20] A. J. Laub and A. Linnemann, Hessenberg and Hessenberg/triangular forms in linear system theory, Internat. J. Control, 44 (1986), pp. 1523–1547. · Zbl 0608.93017
[21] S. H. Lui, Computation of pseudospectra by continuation, SIAM J. Sci. Comput., 18 (1997), pp. 565–573, . · Zbl 0874.65027
[22] J. J. Modi and M. R. B. Clarke, An alternative Givens ordering, Numer. Math., 43 (1984), pp. 83–90. · Zbl 0504.65013
[23] Nvidia, CUBLAS Library User Guide, nVidia, v5.0 ed., 2012.
[24] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651–1674, . · Zbl 1123.65022
[25] V. Simoncini, Restarted full orthogonalization method for shifted linear systems, BIT, 43 (2003), pp. 459–466. · Zbl 1033.65015
[26] V. Simoncini and E. Gallopoulos, Transfer functions and resolvent norm approximation of large matrices, Electron. Trans. Numer. Anal., 7 (1998), pp. 190–201. · Zbl 0915.65029
[28] K.-C. Toh and L. N. Trefethen, Calculation of pseudospectra by the Arnoldi iteration, SIAM J. Sci. Comput., 17 (1996), pp. 1–15, . · Zbl 0842.65022
[29] S. Tomov, R. Nath, and J. Dongarra, Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing, Parallel Comput., 36 (2010), pp. 645–654. · Zbl 1214.65020
[30] T. G. Wright and L. N. Trefethen, Large-scale computation of pseudospectra using ARPACK and eigs, SIAM J. Sci. Comput., 23 (2001), pp. 591–605, . · Zbl 0992.65030
[31] H.-X. Zhong and X.-M. Gu, A Flexible and Adaptive Simpler GMRES with Deflated Restarting for Shifted Linear Systems, preprint, , 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.