zbMATH — the first resource for mathematics

A continuous threshold expectile model. (English) Zbl 06917797
Summary: Expectile regression is a useful tool for exploring the relation between the response and the explanatory variables beyond the conditional mean. A continuous threshold expectile regression is developed for modeling data in which the effect of a covariate on the response variable is linear but varies below and above an unknown threshold in a continuous way. The estimators for the threshold and the regression coefficients are obtained using a grid search approach. The asymptotic properties for all the estimators are derived, and the estimator for the threshold is shown to achieve root-n consistency. A weighted CUSUM type test statistic is proposed for the existence of a threshold at a given expectile, and its asymptotic properties are derived under both the null and the local alternative models. This test only requires fitting the model under the null hypothesis in the absence of a threshold, thus it is computationally more efficient than the likelihood-ratio type tests. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic cases. The application of the proposed method on a Dutch growth data and a baseball pitcher salary data reveals interesting insights. The proposed method is implemented in the R package cthreshER.
62 Statistics
Full Text: DOI
[1] Aigner, D.; Amemiya, T.; Poirier, D. J., On the estimation of production frontiers: maximum likelihood estimation of the parameters of a discontinuous density function, Internat. Econom. Rev., 17, 377-396, (1976) · Zbl 0339.62083
[2] Andrews, D., Tests for parameter instability and structural change with unknown change point, Econometrica, 61, 821-856, (1993) · Zbl 0795.62012
[3] Bai, J., Testing for parameter constancy in linear regressions: an empirical distribution function approach, Econometrica, 64, 597-622, (1996) · Zbl 0844.62032
[4] Chan, K. S., Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model, Ann. Statist., 21, 520-533, (1993) · Zbl 0786.62089
[5] Chan, K. S.; Tsay, R. S., Limiting properties of the least squares estimator of a continuous threshold autoregressive model, Biometrika, 85, 413-426, (1998) · Zbl 0938.62089
[6] Chappell, R., Fitting bent lines to data, with applications to allometry, J. Theoret. Biol., 138, 235-256, (1989)
[7] Chiu, G.; Lockhart, R.; Routledge, R., Bent-cable regression theory and applications, J. Amer. Statist. Assoc., 101, 542-553, (2006) · Zbl 1119.62347
[8] Cho, J. S.; White, H., Testing for regime switching, Econometrica, 75, 1671-1720, (2007) · Zbl 1129.62072
[9] De Rossi, G.; Harvey, A., Quantiles, expectiles and splines, J. Econometrics, 152, 179-185, (2009) · Zbl 1431.62153
[10] Efron, B., Regression percentiles using asymmetric squared error loss, Statist. Sinica, 1, 93-125, (1991) · Zbl 0822.62054
[11] Feder, P. I., On asymptotic distribution theory in segmented regression problems-identified case, Ann. Statist., 3, 49-83, (1975) · Zbl 0324.62014
[12] Hansen, B. E., Inference when a nuisance parameter is not identified under the null hypothesis, Econometrica, 64, 413-430, (1996) · Zbl 0862.62090
[13] Hansen, B. E., Regression kink with an unknown threshold, J. Bus. Econom. Statist., 228-240, (2017)
[14] Haupert, M.; Murray, J., Regime switching and wages in major league baseball under the reserve clause, Cliometrica, 6, 143-162, (2012)
[15] Hettmansperger, T.; McKean, J. W., Robust Nonparametric Statistical Methods, (2011), Chapman New York · Zbl 1263.62048
[16] Hinkley, D. V., Inference about the intersection in two-phase regression, Biometrika, 56, 495-504, (1969) · Zbl 0183.48505
[17] Hoaglin, D. C.; Velleman, P. F., A critical look at some analyses of major league baseball salaries, Amer. Statist., 49, 277-285, (1995)
[18] Kim, M.; Lee, S., Nonlinear expectile regression with application to value-at-risk and expected shortfall estimation, Comput. Statist. Data Anal., 94, 1-19, (2016) · Zbl 06918649
[19] Kloke, J., McKean, J., 2016. Rfit: Rank estimation for linear models. R package version 1.0, URL: https://CRAN.R-project.org/package=Rfit.
[20] Kneib, T., Beyond mean regression, Stat. Model., 13, 275-303, (2013)
[21] Koenker, R.; Bassett, J. G., Regression quantiles, Econometrica, 46, 33-50, (1978) · Zbl 0373.62038
[22] Kosorok, M. R.; Song, R., Inference under right censoring for transformation models with a change-point based on a covariate threshold, Ann. Statist., 35, 957-989, (2007) · Zbl 1136.62376
[23] Kuan, C. M.; Yeh, J. H.; Hsu, Y. C., Assessing value at risk with care, the conditional autoregressive expectile models, J. Econometrics, 150, 261-270, (2009) · Zbl 1429.62474
[24] Lee, S.; Seo, M. H.; Shin, Y., Testing for threshold effects in regression models, J. Amer. Statist. Assoc., 106, 220-231, (2011) · Zbl 1396.62025
[25] Li, C.; Wei, Y.; Chappell, R.; He, X., Bent line quantile regression with application to an allometric study of land mammals’ speed and mass, Biometrics, 67, 242-249, (2011) · Zbl 1217.62052
[26] Newey, W. K.; McFadden, D., Large sample estimation and hypothesis testing, (Handbook of Econometrics, Vol. 4, (1994)), 2111-2245
[27] Newey, W. K.; Powell, J. L., Asymmetric least squares estimation and testing, Econometrica, 55, 819-847, (1987) · Zbl 0625.62047
[28] Pollard, D., Convergence of Stochastic Processes, (1984), Springer Science & Business Media · Zbl 0544.60045
[29] Qu, Z., Testing for structural change in regression quantiles, J. Econometrics, 146, 170-184, (2008) · Zbl 1418.62274
[30] Quandt, R. E., The estimation of the parameters of a linear regression system obeying two separate regimes, J. Amer. Statist. Assoc., 53, 873-880, (1958) · Zbl 0116.37304
[31] Quandt, R. E., Tests of the hypothesis that a linear regression system obeys two separate regimes, J. Amer. Statist. Assoc., 55, 324-330, (1960) · Zbl 0095.13602
[32] Schnabel, S. K.; Eilers, P. H., Optimal expectile smoothing, Comput. Statist. Data Anal., 53, 4168-4177, (2009) · Zbl 1453.62192
[33] Schulze Waltrup, L.; Sobotka, F.; Kneib, T.; Kauermann, G., Expectile and quantile regression-david and goliath?, Stat. Model., 15, 433-456, (2015)
[34] Silverman, B. W., Density Estimation for Statistics and Data Analysis, Vol. 26, (1986), CRC Press · Zbl 0617.62042
[35] Sobotka, F.; Kauermann, G.; Schulze Waltrup, L.; Kneib, T., On confidence intervals for semiparametric expectile regression, Stat. Comput., 23, 135-148, (2013) · Zbl 1322.62136
[36] Sobotka, F., Schnabel, S., Schulze Waltrup, L., Eilers, P., Kneib, T., Kauermann, G., 2014. expectreg: expectile and quantile regression. R package version 0.39, URL: https://CRAN.R-project.org/package=expectreg.
[37] Stute, W., Nonparametric model checks for regression, Ann. Statist., 25, 613-641, (1997) · Zbl 0926.62035
[38] van Buuren, S., Worm plot to diagnose fit in quantile regression, Stat. Model., 7, 363-376, (2007)
[39] van Buuren, S.; Fredriks, M., Worm plot: a simple diagnostic device for modelling growth reference curves, Stat. Med., 20, 1259-1277, (2001)
[40] Van der Vaart, A. W., Asymptotic Statistics, (2000), Cambridge University Press · Zbl 0910.62001
[41] Xie, S.; Zhou, Y.; Wan, A., A varying-coefficient expectile model for estimating value at risk, J. Bus. Econom. Statist., 32, 576-592, (2014)
[42] Yao, Q.; Tong, H., Asymmetric least squares regression estimation: A nonparametric approach, J. Nonparametr. Stat., 6, 273-292, (1996) · Zbl 0879.62038
[43] Zhang, F., Li, Q., 2016. cthreshER: Continuous threshold expectile regression. R package version 1.0, URL: https://CRAN.R-project.org/package=cthreshER.
[44] Zhang, F.; Li, Q., Robust bent line regression, J. Statist. Plann. Inference, 185, 41-55, (2017) · Zbl 1360.62390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.