zbMATH — the first resource for mathematics

Small area estimation of the Gini concentration coefficient. (English) Zbl 06918385
Summary: The Gini coefficient is a popular concentration measure often used in the analysis of economic inequality. Estimates of this index for small regions may be useful to properly represent inequalities within local communities. However, the small area estimation for the Gini coefficient has not been thoroughly investigated. A method based on area level models, thereby avoiding the assumption of the availability of Census data at the micro level, is proposed. A modified design based estimator for the coefficient with reduced small sample bias is suggested as input for the small area model, while a hierarchical Beta mixed regression model is introduced to combine survey data and auxiliary information. The methodology is illustrated by means of an example based on Italian data from the European Union Survey on Income and Living Conditions.
62-XX Statistics
BUGS; laeken
PDF BibTeX Cite
Full Text: DOI
[1] Alfons, A.; Templ, M., Estimation of social exclusion indicators from complex surveys: the R package , J. Stat. Softw., 54, 15, (2013)
[2] Alfons, A.; Templ, M.; Filzmoser, P., An object-oriented framework for statistical simulation: the R package , J. Stat. Softw., 37, 3, (2010)
[3] Alfons, A.; Templ, M.; Filzmoser, P., Robust estimation of economic indicators from survey samples based on Pareto tail modeling, J. Roy. Statist. Soc. Ser. C, 62, 271-286, (2013)
[4] Anderson, B., Estimating small area income deprivation: an iterative proportional Fitting approach, (Edwards, K.; Tanton, R., Spatial Microsimulation: A Reference Guide for Users, (2013), Springer New York), 49-67
[5] Armagan, A.; Dunson, D. B.; Clyde, M., Generalized beta mixtures of gaussians, (Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F.; Weinberger, K., Advances in Neural Information Processing Systems 24, (2011)), 523-531
[6] Artelaris, P.; Petrosakos, G., Intraregional spatial inequality and regional income level in the European union; beyond the inverted-U hypothesis, Int. Reg. Sci. Rev., 1-27, (2014)
[7] Atkinson, A. B., On the measurement of inequality, J. Econom. Theory, 67, 261-272, (1970)
[8] Atkinson, A. B.; Marlier, E.; Montaigne, F.; Reinstadler, A., Income poverty and income inequality, (Atkinson, A. B.; Marlier, E., Eurostat Statistics Books: Income and Living Conditions in Europe, (2010), Publication Office of the European Union Luxembourg)
[9] Bayes, C. L.; Bazàn, J. L.; Garcìa, C., A new robust regression model for proportions, Bayesian Anal., 7, 771-796, (2012)
[10] Bibby, B. M.; Sørensen, M., Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes, (Rachev, S. T., Handbook of Heavy Tailed Distributions in Finance, (2003), Elsevier Science B.V.), 211-248
[11] Borjas, G. J.; Freeman, R. B.; Katz, L., On the labor market effects of immigration and trade, (Borjas, G. J.; Freeman, R. B., Immigration and the Workforce, (1992), University of Chicago Press Chicago), 213-244
[12] Branscum, A. J.; Johnson, W. O.; Thurmond, M. C., Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth disease viruses, Aust. N. Z. J. Stat., 49, 287-301, (2007) · Zbl 1136.62323
[13] Cowell, F. A., Measurement of inequality, (Atkinson, A. B.; Bourgignon, F., Handbook of Income Distribution, (2000), North Holland Amsterdam), 87-166
[14] Da Silva, C. Q.; Migon, H. S.; Correia, L. T., Dynamic Bayesian beta models, Comput. Statist. Data Anal., 55, 2074-2089, (2011) · Zbl 1328.62159
[15] Davidson, R., Reliable inference for the gini index, J. Econometrics, 150, 30-40, (2009) · Zbl 1429.91243
[16] Deltas, G., The small-sample bias of the gini coefficient: results and implications for empirical research, Rev. Econ. Stat., 85, 226-234, (2003)
[17] Demombynes, G.; Özler, B., Crime and local inequality in south africa, J. Dev. Econ., 76, 198-213, (2005)
[18] Elbers, C.; Lanjouw, J.; Lanjouw, P., Micro-level estimation of poverty and inequality, Econometrica, 71, 355-364, (2003) · Zbl 1184.91163
[19] Elbers, C.; Lanjouw, P.; Mistiaen, J.; Özler, B.; Simler, K., On the unequal inequality of poor communities, World Bank Econ. Rev., 18, 401-421, (2005)
[20] Fabrizi, E.; Ferrante, M. R.; Pacei, S.; Trivisano, C., Hierarchical Bayes multivariate estimation of poverty rates based on increasing thresholds for small domains, Comput. Statist. Data Anal., 55, 1736-1747, (2011) · Zbl 1328.62023
[21] Figueroa-Zuñiga, J. I.; Arellano-Valle, R. B.; Ferrari, S. L.P., Mixed beta regression: a Bayesian perspective, Comput. Statist. Data Anal., 61, 137-147, (2013) · Zbl 1348.62194
[22] Fusco, A.; Guio, A. C.; Marlier, E., Chracterizing the income poor and the materially deprived in European countries, (Atkinson, A. B.; Marlier, E., Eurostat Statistics Books: Income and Living Conditions in Europe, (2010), Publication Office of the European Union Luxembourg)
[23] Gelfand, A. E.; Dey, D. K.; Chang, H., Model determination using predictive distributions with implementation via sampling based methods (with discussion), (Bernardo, J. M.; Berger, J. O.; Dawid, A. P.; Smith, A. F.M., Bayesian Statistics 4, (1992), Oxford University Press Oxford), 147-167
[24] Gelman, A., Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 515-533, (2006) · Zbl 1331.62139
[25] Ibrahim, J.; Chen, M.; Sinha, D., Bayesian survival analysis, (2001), Springer-Verlag New York · Zbl 0978.62091
[26] Jasso, G., On gini’s mean difference and gini’s index of concentration, Amer. Sociol. Rev., 44, 867-870, (1979)
[27] Jenkins, S. P.; Van Kerm, P., The measurement of economic inequality, (Salverda, W.; Nolan, B.; Smeeding, T. M., The Oxford Handbook of Economic Inequality, (2009), Oxford University Press Oxford), 40-67
[28] Langel, M.; Tillé, Y., Variance estimation of the gini index: revisiting a result several times published, J. Roy. Statist. Soc. Ser. C, 7, 521-540, (2013)
[29] Liu, B.; Lahiri, P.; Kalton, G., Hierarchical Bayes modeling of survey weighted small area proportions, Surv. Methodol., 40, 1-13, (2014)
[30] Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N., The BUGS project: evolution, critique and future directions, Stat. Med., 28, 3049-3067, (2009)
[31] Miranti, R., Cassels, R., Vidyattama, Y., McNamara, J., 2009. Inequality in Australia: Does region matter? In: Conference Papers/NATSEM, National Centre for Social and Economic Modelling, University of Canberra, 131, p. 38.
[32] Nguyen, V. C.; Tran, N. T.; van der Weide, R., Poverty and inequality maps in rural Vietnam: an application of small area estimation, Asian Econ. Rev., 24, 355-390, (2010)
[33] Perugini, C.; Martino, G., Income inequality within European regions: determinants and effects on growth, Rev. Income Wealth, 54, 373-406, (2008)
[34] Rao, J. N.K., Small area estimation, (2003), John Wiley & sons New York · Zbl 1403.62022
[35] Sarno, E., A variance stabilizing transformation for the gini concentration ratio, J. Ital. Stat. Soc., 1, 77-91, (1998)
[36] Sen, A. K., On economic inequality, (1973), Clarendon Press Oxford
[37] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; van der Linde, A., Bayesian measures of model complexity and fit (with discussion), J. Roy. Statist. Soc. Ser. B, 64, 583-639, (2002) · Zbl 1067.62010
[38] Tarozzi, A.; Deaton, A., Using census and survey data to estimate poverty and inequality for small areas, Rev. Econ. Stat., 91, 773-792, (2009)
[39] Van Kerm, P., 2007. Extreme incomes and the estimation of poverty and inequality indicators from EUSILC. Working Paper Series 2007-01. Centre d’Etudes de Populations, de Pauvrete et de Politiques Socio- Economiques International Network for Studies in Technology, Environment, Alternatives, Development.
[40] Vandewalle, B.; Beirlant, J.; Christmann, A.; Hubert, M., A robust estimator for the tail index of Pareto-type distributions, Comput. Statist. Data Anal., 51, 6252-6268, (2007) · Zbl 1445.62102
[41] Yitzhaki, S., More than a dozen alternative ways of spelling gini, Res. Econ. Inequal., 8, 13-30, (2002)
[42] You, Y.; Rao, J. N.K., Small area estimation using unmatched sampling and linking models, Canad. J. Statist., 30, 3-15, (2002) · Zbl 0999.62006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.