×

Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise. (English) Zbl 1431.60053

Summary: We analyze the bilinear optimal control problem of quantum mechanical systems with final observation governed by a stochastic nonlinear Schrödinger equation perturbed by a linear multiplicative Wiener process. The existence of an open-loop optimal control and first-order Lagrange optimality conditions are derived, via Skorohod’s representation theorem, Ekeland’s variational principle and the existence for the linearized dual backward stochastic equation. Moreover, our approach in particular applies to the deterministic case.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q40 PDEs in connection with quantum mechanics
49K20 Optimality conditions for problems involving partial differential equations
35J10 Schrödinger operator, Schrödinger equation
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Barbu, V., Röckner, M. and Zhang, D. (2014). Stochastic nonlinear Schrödinger equations with linear multiplicative noise: Rescaling approach. J. Nonlinear Sci.24 383-409.
[2] Barbu, V., Röckner, M. and Zhang, D. (2016). Stochastic nonlinear Schrödinger equations. Nonlinear Anal.136 168-194.
[3] Barbu, V., Röckner, M. and Zhang, D. (2017). Stochastic nonlinear Schrödinger equations: No blow-up in the non-conservative case. J. Differential Equations263 7919-7940. · Zbl 1378.60088
[4] Barchielli, A. and Gregoratti, M. (2009). Quantum Trajectories and Measurements in Continuous Time. The Diffusive Case. Lecture Notes in Physics782. Springer, Heidelberg. · Zbl 1182.81001
[5] Beauchard, K., Coron, J. M., Mirrahimi, M. and Rouchon, P. (2007). Implicit Lyapunov control of finite dimensional Schrödinger equations. Systems Control Lett.56 388-395. · Zbl 1110.81063
[6] Borzî, A. and Hohenester, U. (2007/08). Multigrid optimization schemes for solving Bose-Einstein condensate control problems. SIAM J. Sci. Comput.30 441-462. · Zbl 1168.35420
[7] Butkovskiy, A. G. and Samoylenko, Yu. I. (1990). Control of Quantum-Mechanical Processes and Systems. Mathematics and Its Applications (Soviet Series) 56. Kluwer Academic, Dordrecht.
[8] Da Prato, G. and Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions, 2nd ed. Encyclopedia of Mathematics and Its Applications152. Cambridge Univ. Press, Cambridge. · Zbl 1317.60077
[9] de Bouard, A. and Debussche, A. (1999). A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm. Math. Phys.205 161-181. · Zbl 0952.60061
[10] de Bouard, A. and Debussche, A. (2003). The stochastic nonlinear Schrödinger equation in \(H^{1}\). Stoch. Anal. Appl.21 97-126. · Zbl 1027.60065
[11] Edelstein, M. (1968). On nearest points of sets in uniformly convex Banach spaces. J. Lond. Math. Soc. (2) 43 375-377. · Zbl 0183.40403
[12] Ekeland, I. (1974). On the variational principle. J. Math. Anal. Appl.47 324-353. · Zbl 0286.49015
[13] Ekeland, I. (1979). Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.) 1 443-474. · Zbl 0441.49011
[14] Fuhrman, M. and Tessitore, G. (2002). Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control. Ann. Probab.30 1397-1465. · Zbl 1017.60076
[15] Gyöngy, I. and Krylov, N. (1996). Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields105 143-158. · Zbl 0847.60038
[16] Hintermüller, M., Marahrens, D., Markowich, P. A. and Sparber, C. (2013). Optimal bilinear control of Gross-Pitaevskii equations. SIAM J. Control Optim.51 2509-2543. · Zbl 1277.49005
[17] Hu, Y. and Peng, S. G. (1991). Adapted solution of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl.9 445-459. · Zbl 0736.60051
[18] Ito, K. and Kunisch, K. (2007). Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control Optim.46 274-287. · Zbl 1136.35089
[19] Jäger, G., Reich, D. M., Goerz, M. H., Koch, C. P. and Hohenester, U. (2014). Optimal quantum control of Bose-Einstein condensates in magnetic microtrps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes. Phys. Rev. A90 033628.
[20] Linares, F. and Ponce, G. (2009). Introduction to Nonlinear Dispersive Equations. Springer, New York. · Zbl 1178.35004
[21] Liu, W. and Röckner, M. (2015). Stochastic Partial Differential Equations: An Introduction. Springer, Cham.
[22] Marzuola, J., Metcalfe, J. and Tataru, D. (2008). Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal.255 1497-1553. · Zbl 1180.35187
[23] Mirrahimi, M., Rouchon, P. and Turinici, G. (2005). Lyapunov control of bilinear Schrödinger equations. Automatica J. IFAC41 1987-1994. · Zbl 1125.93466
[24] Peirce, A. P., Dahleh, M. A. and Rabitz, H. (1988). Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A (3) 37 4950-4964.
[25] Rockafellar, R. T. (1979). Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. (3) 39 331-355. · Zbl 0413.49015
[26] Saanouni, T. (2015). Remarks on damped fractional Schrödinger equation with pure power nonlinearity. J. Math. Phys.56 061502, 14. · Zbl 1320.35329
[27] Simon, J. (1987). Compact sets in the space \(L^{p}(0,T;B)\). Ann. Mat. Pura Appl. (4) 146 65-96. · Zbl 0629.46031
[28] Tessitore, G. (1996). Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE. Stoch. Anal. Appl.14 461-486. · Zbl 0876.60044
[29] Werschnik, J. and Gross, E. K. U. (2007). Quantum optimal control theory. J. Phys. B40 R175-R211.
[30] Yong, J. · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.