Davie, A. M.; Smyth, C. J. On a limiting fractal measure defined by conjugate algebraic integers. (English) Zbl 0692.12002 Publ. Math. Orsay 89/01, 93-103 (1989). The authors define a sequence \((\beta_ i)_{i=0,1,2,...}\) of real algebraic integers via \(\beta_ 0=1\) and \(\beta_ i\) being the positive root of \(\beta_ i-\beta_ i^{-1}-\beta_{i-1}=0\). They discuss the distribution of the conjugates \(\beta_ i^{(j)}\) of \(\beta_ i\) on the real line and prove that the sequence \[ (\prod^{\deg (\beta_ i)}_{j=1}\max (1,\quad | \beta_ i^{(j)}|^ 2))^{1/\deg (\beta_ i)} \] is monotonously increasing. Thus they extend and improve on earlier results of the second author [J. Aust. Math. Soc., Ser. A 30, 137-149 (1980; Zbl 0457.12001), and Math. Comput. 37, 205-208 (1981; Zbl 0475.12001)]. Reviewer: M.Pohst Cited in 1 Document MSC: 11R04 Algebraic numbers; rings of algebraic integers 12-04 Software, source code, etc. for problems pertaining to field theory Keywords:fractal measure; measures of algebraic integers; distribution of conjugates of special algebraic integers; real algebraic integers Citations:Zbl 0457.12001; Zbl 0475.12001 PDFBibTeX XMLCite \textit{A. M. Davie} and \textit{C. J. Smyth}, Publ. Math. Orsay 89/01, 93--103 (1989; Zbl 0692.12002)