×

Dynamical systems with Newtonian type potentials. (English) Zbl 0692.34050

This paper is concerned with periodic solutions to the conservative dynamical system in \({\mathbb{R}}^ n\) given by \((*)q''+\text{grad} V(q)=0,\) where V(q) is a potential of Newtonian type (i.e. \(V(x)\approx -1/| x|^{\alpha}\) for \(\alpha\geq 1)\). The authors assume that V(x) is defined in a neighborhood of the origin and \(\lim_{| x| \to 0}V(x)=-\infty;\) they then look for periodic solutions which do not cross the origin. The authors’ main result is the existence of an origin- avoiding T-periodic solution to (*) provided that:
(1) V can be estimated via \(\psi_ 0(1/| x|)\leq -V(x)\leq \psi_ 1(1/| x|)\) for all x in a neighborhood of the origin where \(\psi_ 0,\psi_ 1: (0,\infty)\to [0,\infty)\) are non-constant and convex with \(\lim_{s\to 0}\psi_ i(s)=0\), and
(2) \(\phi_ 1(\psi_ 1,T)\leq \phi_ 0(\psi_ 0,T)\) where \(\phi_ 0\) gives a lower estimate of the Lagrangian integral on curves which meet the singularity, and \(\phi_ 1\) gives an upper estimate of the Lagrangian integral on the circular trajectories of minimum period T and speed of constant modulus, which lie on a suitable sphere centered at the origin.
Reviewer: W.J.Satzer jun.

MSC:

37-XX Dynamical systems and ergodic theory
34C25 Periodic solutions to ordinary differential equations

References:

[1] A. Ambrosetti - V. Coti Zelati , Solutions with minimal period for Hamiltonian systems in a potential well , Ann. Inst. H. Poincaré. Anal. Non Linéaire 4 ( 1987 ), 275 - 296 . Numdam | MR 898050 | Zbl 0623.58013 · Zbl 0623.58013
[2] A. Ambrosetti - V. Coti Zelati , Critical points with lack of compactness and singular dynamical systems , Ann. Mat. Pura Appl. ( 4 ) 149 ( 1987 ), 237 - 259 . MR 932787 | Zbl 0642.58017 · Zbl 0642.58017 · doi:10.1007/BF01773936
[3] V. Benci , Normal modes of a Lagrangian system constrained in a potential well , Ann. Inst. H. Poincaré. Anal. Non. Linéaire 1 ( 1984 ), 379 - 400 . Numdam | MR 779875 | Zbl 0561.58006 · Zbl 0561.58006
[4] H. Brezis , Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North - Holland Mathematics Studies, 5, Notas de Matemàtica (50) , North - Holland , Amsterdam - London , 1973 . Zbl 0252.47055 · Zbl 0252.47055
[5] F.E. Browder , Nonlinear eigenvalue problems and group invariance, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago , Chicago, Ill. , 1968 ), 1 - 58 , Springer , New York , 1970 . MR 271781 | Zbl 0213.41304 · Zbl 0213.41304
[6] A. Capozzi - C. Greco - A. Salvatore , Lagrangian systems in presence of singularities (preprint), Dip. Mat. Bari , Bari , 1985 . MR 915729 · Zbl 0664.34054
[7] V. Coti Zelati , Dynamical systems with effective-like potentials , Nonlinear Anal. 12 ( 1988 ), 209 - 222 . MR 926213 | Zbl 0648.34050 · Zbl 0648.34050 · doi:10.1016/0362-546X(88)90035-1
[8] M. Degiovanni - F. Giannoni - A. Marino , Dynamical systems with Newtonian type potentials , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. ( 8 ) 81 ( 1987 ), 271 - 278 . MR 999819 | Zbl 0667.70010 · Zbl 0667.70010
[9] M. Degiovanni - F. Giannoni - A. Marino , Periodic solutions of dynamical systems with Newtonian type potentials, Periodic Solutions of Hamiltonian Systems and Related Topics (Il Ciocco, 1986) , 111 - 115 , NATO ASI Series, C 209 , Reidel , Dordrecht , 1987 . MR 920613 | Zbl 0632.34038 · Zbl 0632.34038
[10] W.B. Gordon , Conservative dynamical systems involving strong forces , Trans. Amer. Math. Soc. 204 ( 1975 ), 113 - 135 . MR 377983 | Zbl 0276.58005 · Zbl 0276.58005 · doi:10.2307/1997352
[11] W.B. Gordon , A minimizing property of Keplerian orbits , Amer. J. Math. 99 ( 1977 ), 961 - 971 . MR 502484 | Zbl 0378.58006 · Zbl 0378.58006 · doi:10.2307/2373993
[12] C. Greco , Periodic solutions of some nonlinear ODE with singular nonlinear part (preprint), Dip. Mat. Bari , Bari , 1985 . MR 916285 · Zbl 0644.34034
[13] C. Greco , Periodic solutions of a class of singular Hamiltonian systems , Nonlinear Anal. 12 ( 1988 ), 259 - 270 . MR 928560 | Zbl 0648.34048 · Zbl 0648.34048 · doi:10.1016/0362-546X(88)90112-5
[14] W. Klingenberg , Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften , 230 , Springer - Verlag , Berlin - New York , 1978 . MR 478069 | Zbl 0397.58018 · Zbl 0397.58018
[15] R.S. Palais , Critical point theory and the minimax principle, Global Analysis (Proc. Sympos. Pure Math. , XV , Berkeley, Calif. , 1968 ), 185 - 212 , Amer. Math. Soc ., Providence, R.I. , 1970 . MR 264712 | Zbl 0212.28902 · Zbl 0212.28902
[16] P.H. Rabinowitz , Periodic solutions of Hamiltonian systems: a survey , SIAM J. Math. Anal. 13 ( 1982 ), 343 - 352 . MR 653462 | Zbl 0521.58028 · Zbl 0521.58028 · doi:10.1137/0513027
[17] J.T. Schwartz , Nonlinear functional analysis , Gordon & Breach , New York , 1969 . MR 433481 | Zbl 0203.14501 · Zbl 0203.14501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.