zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The real zeros of the Bernoulli polynomials. (English) Zbl 0692.41006
The author gives an empirical method for determining the exact number, $R\sb n$, of real zeros of $B\sb n(x)$ up to $n=200$. Up to $n=117$ the exact value is listed (table IV and table V). A general method is presented. The results are presented with a precision of approximately 17 decimal digits.
Reviewer: M.Gaspar

11B68Bernoulli and Euler numbers and polynomials
12D10Algebraic theorems of location of zeros of polynomials over R or C
Full Text: DOI
[1] Brillhart, J.: On the Euler and Bernoulli polynomials. J. reine angew. Math. 234, 45-64 (1969) · Zbl 0167.35401
[2] J. Brillhart, private communication.
[3] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions. (1964) · Zbl 0171.38503
[4] Carlitz, L.: Note on the irreducibility of the Bernoulli and Euler polynomials. Duke math. J. 19, 475-481 (1952) · Zbl 0047.25401
[5] Delange, H.: Sur LES zéros réels des polynômes de Bernoulli. CR acad. Sci. Paris ser. 1 303, No. 12, 539-542 (1986)
[6] Dilcher, K.: Asymptotic behaviour of Bernoulli, Euler and generalized Bernoulli polynomials. J. approx. Theory 49, No. 4, 321-330 (1987) · Zbl 0609.10008
[7] Grant, J. A.; Hitchins, G. D.: An always convergent minimization technique for the solution of polynomials equations. J. inst. Math. appl. 8, 122-129 (1971) · Zbl 0222.65064
[8] Inkeri, K.: The real roots of Bernoulli polynomials. Ann. univ. Turku ser. A I 37, 1-20 (1959) · Zbl 0104.01502
[9] Jordan, C.: Calculus of finite differences. (1965) · Zbl 0154.33901
[10] Knuth, D. E.: The art of computer programming. 1 (1973) · Zbl 0191.17903
[11] L. Lander, private communication.
[12] Leeming, David J.: An asymptotic estimate for the Bernoulli and Euler numbers. Canad. math. Bull. 20, No. 1, 109-111 (1977) · Zbl 0358.10006
[13] Lehmer, D. H.: On the maxima and minima of Bernoulli polynomials. Amer. math. Monthly 47, 533-538 (1940) · Zbl 66.0319.04
[14] Lense, J.: Über die nullstellen der bernoullischen polynome. Monatsh. math. 41, 188-190 (1934) · Zbl 0009.31101
[15] Nörlund, N. E.: Vorlesungen über differenzenrechnung. (1954)
[16] Nörlund, N. E.: Mémoire sur LES polynômes de Bernoulli. Acta math. 43, 121-196 (1922)
[17] Ostrowski, A. M.: On the zeros of Bernoulli polynomials of even order. Enseign. math. 6, 27-47 (1960) · Zbl 0103.25401