zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An augmented Lagrangian technique for variational inequalities. (English) Zbl 0692.49008
Summary: A general framework for the treatment of a class of elliptic variational inequalities by an augmented Lagrangian method, when inequalities with infinite-dimensional image space are augmented, is developed. Applications to the obstacle problem, the elastoplastic torsion problem, and the Signorini problem are given.

49J40Variational methods including variational inequalities
49M29Methods involving duality in calculus of variations
Full Text: DOI
[1] C. Baiocchi and A. Capelo: Variational and Quasivariational Inequalities, Applications to Free Boundary Value Problems; Wiley, Chichester, 1984. · Zbl 0551.49007
[2] D. P. Bertsekas: Constraint Optimization and Lagrange Multiplier Methods; Academic Press, New York, 1982.
[3] A. Brandt and C. W. Cryer: Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems; SIAM J. Sci. Statist. Comput., 4 (1983), 655-684. · Zbl 0542.65060 · doi:10.1137/0904046
[4] H. Brezis: Multiplicateur de Lagrange en Torsion Elasto-Plastique; Arch. Rational Mech. Anal., 49 (1972), 32-40. · Zbl 0265.35021 · doi:10.1007/BF00281472
[5] M. Fortin and R. Glowinski: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems; North-Holland, Amsterdam, 1982. · Zbl 0525.65045
[6] A. Friedman: Variational Principles and Free Boundary Problems; Wiley, Chichester, 1982. · Zbl 0564.49002
[7] R. Glowinski: Numerical Methods for Nonlinear Variational Problems; Springer-Verlag, Berlin, 1984. · Zbl 0536.65054
[8] R. Glowinski, J. L. Lions, and R. Trémolièrs: Numerical Analysis of Variational Problems; North-Holland, Amsterdam, 1981.
[9] P. Grisvard: Elliptic Problems in Nonsmooth Domains; Pitman, Boston, 1985. · Zbl 0695.35060
[10] K. Ito and K. Kunisch: The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces; Math. Programming, to appear. · Zbl 0706.90096
[11] K. Ito and K. Kunisch: The augmented Lagrangian method for parameter estimation in elliptic systems; SIAM J. Control Optim., to appear. · Zbl 0709.93021
[12] D. Kinderlehrer and G. Stampacchia: An Introduction to Variational Inequalities and Their Applications; Academic Press, New York, 1980. · Zbl 0457.35001
[13] K. Kunisch and H. Schelch: Numerical experiments with the augmented Lagrangian method to solve elliptic variational inequalities; Technical Report No. 111-88, Technical University of Graz, 1988.
[14] O. A. Ladyzhenskaya: The Boundary Value Problems of Mathematical Physics; Springer-Verlag, Berlin, 1985.
[15] K. Malanowski: Sensitivity analysis of convex optimization problems; preprint. · Zbl 0685.49016
[16] M. Maurer and J. Zowe: First and second order necessary and sufficient optimality conditions for infinite dimensional programming problems; Math. Programming, 16 (1979), 98-110. · Zbl 0398.90109 · doi:10.1007/BF01582096
[17] J.-F. Rodrigues: Obstacle Problems in Mathematical Physics; North-Holland, Amsterdam, 1987. · Zbl 0606.73017
[18] K. Yoshida: Functional Analysis; Springer-Verlag, Berlin, 1974.