zbMATH — the first resource for mathematics

Rigidity and crystallographic groups. I. (English) Zbl 0692.57017
Rigidity results in topology originated from the work of L. Bieberbach [see L. S. Charlap: Bieberbach groups and flat manifolds (1986; Zbl 0608.53001) for a transparent exposition of related results]. A related conjecture, due to A. Borel, asserts that any two isomorphic, torsion free, properly discontinuous, co-compact subgroups of \(Homeo({\mathbb{R}}^ n)\) must be conjugate. This conjecture has been verified in a number of special cases [see, e.g., F. T. Farrel and W. C. Hsiang, Am. J. Math. 105, 641-672 (1983; Zbl 0521.57018), and F. T. Farrell and L. E. Jones, Invent. Math. 91, 559-586 (1988; Zbl 0657.57015); cf. W. C. Hsiang and J. L. Shaneson, Topology of Manifolds, Proc. Univ. Georgia 1969, 18-51 (1971; Zbl 0288.57006)]. In all cases, the proofs use the “h-cobordism rigidity” result stating that the Whitehead group Wh(\(\Gamma)\) vanishes for a torsion free group \(\Gamma\).
The main theorem of the paper under review provides a new kind of “h- cobordism rigidity” result to the effect that the Tate cohomology \(\hat H^*({\mathbb{Z}}/2{\mathbb{Z}};Wh_ G^{top,\rho}(M_{\Gamma}))\) vanishes, where \(Wh_ G^{top,\rho}(M_{\Gamma})\) is the Whitehead group of G-h- cobordisms of the flat torus \(M_{\Gamma}\) of a crystallographic group \(\Gamma\) with holonomy group G. In order to define the Tate cohomology, the authors consider a function \[ Wh_ G^{top,\rho}(M_{\Gamma})\to Wh_ G^{top,\rho}(M_{\Gamma}) \] and using F. Conolly and W. Lück’s “The involution on the equivariant Whitehead group” [K- Theory 3, No.2, 123-140 (1989)], they show that it is a group homomorphism and an involution.
The authors observe that the main theorem implies that any crystallographic manifold, with odd order holonomy, which is h-cobordant and simple homotopy equivalent to the standard one is actually homeomorphic to it. They also announce that in the second part of their work [Rigidity and crystallographic groups. II (to appear)], they show that one can remove the word “h-cobordant” from the previous sentence.
A generalized (somewhat vague) version of the Borel conjecture is due to F. Quinn [Proc. Int. Congr. Math., Berkeley/Calif. 1986, Vol. 1, 598-606 (1987; Zbl 0673.57017)]. The authors propose a sharpened form of the Borel-Quinn conjecture, and they prove it in a special case.
Reviewer: K.Pawałowski

57S30 Discontinuous groups of transformations
57R85 Equivariant cobordism
53C20 Global Riemannian geometry, including pinching
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
57R80 \(h\)- and \(s\)-cobordism
57Q10 Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc.
57R19 Algebraic topology on manifolds and differential topology
Full Text: DOI EuDML
[1] Bass, H.: Algebraic K-Theory. New York: W. A. Benjamin Inc., 1968 · Zbl 0174.30302
[2] Bass, H., Heller, A., Swan, R.: The Whitehead group of a polynomial extension. Publ. I.H.E.S. 22, 64–79 (1964) · Zbl 0248.18026
[3] Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume. I: Math. Ann. 70, 297–336 (1911);11: Math. Ann. 72, 400–412 (1912) · JFM 42.0144.02 · doi:10.1007/BF01564500
[4] Bredon, G.: Equivariant Cohomology Theories. (Lect. Notes Math., vol. 34). New York Berlin Heidelberg: Springer 1967 · Zbl 0162.27202
[5] Carter, D.: Lower K-theory of finite groups. Comm. Algebra 8, 1927–1937 (1980) · Zbl 0448.16017 · doi:10.1080/00927878008822554
[6] Chapman, T.: Controlled simple homotopy theory and applications. (Lect. Notes Math., vol. 1009). New York Berlin Heidelberg: Springer 1983 · Zbl 0548.57001
[7] Cohen, M.: A course in simple homotopy theory. New York Berlin Heidelberg: Springer 1973 · Zbl 0261.57009
[8] Connolly, F., Kozniewski, T.: Finiteness properties of classifying spaces of proper \(\tau\) actions. J. Pure Appl. Algebra 41, 17–36 (1986) · Zbl 0597.57022 · doi:10.1016/0022-4049(86)90097-6
[9] Connolly, F., Kozniewski, T.: Rigidity and Crystallographic Groups II. (in preparation)
[10] Connolly, F., Lück, W.: The involution on the Equivariant Whitehead Group. J. K-Theory (to appear) · Zbl 0656.57010
[11] Dress, A.: Induction and structure theorems for orthogonal representations of finite groups. Ann. Math. 102, 291–335 (1975) · Zbl 0315.20007 · doi:10.2307/1971033
[12] Epstien, D., Shub, M.: Expanding endomorphisms of flat manifolds, Topology 7, 139–141 (1968) · Zbl 0157.30403 · doi:10.1016/0040-9383(68)90022-0
[13] Farrell, T.: The obstruction to fibering a manifold over a circle. Indiana Univ. Math. J. 21, 315–346 (1971) · Zbl 0242.57016 · doi:10.1512/iumj.1971.21.21024
[14] Farrell, T., Hsiang, W.C.: Rational L-groups of Bieberbach groups. Comm.Math. Helv. 52, 89–109 (1977) · Zbl 0364.57003 · doi:10.1007/BF02567358
[15] Farrell, T., Hsiang, W.C.: A formula for K 1(R \(\alpha\)[T]). Proc. Symp. Pure Math. vol. 17, Applications of Categorial Algebra. American Mathematical Society: Providence 1970
[16] Farrell, T., Hsiang, W.C.: The topological-euclidean space form problem. Invent. Math. 45, 181–192 (1978) · Zbl 0422.57019 · doi:10.1007/BF01390272
[17] Farrell, T., Hsiang, W.C.: Topological Characterization of flat and almost flat manifolds, M n , n 3,4. Am. J. Math. 105, 641–672 (1983) · Zbl 0521.57018 · doi:10.2307/2374318
[18] Farrell, T., Hsiang, W.C.: The Whitehead group of poly-(finite or cyclic) groups. J. London Math. Soc. 24, 308–324 (1981) · Zbl 0514.57002 · doi:10.1112/jlms/s2-24.2.308
[19] Farrell, T., Jones, L.: The surgery L-groups of poly-(finite or cyclic) groups. Invent. Math. 91, 559–586 (1988) · Zbl 0657.57015 · doi:10.1007/BF01388787
[20] Farrell, T., Jones, L.: K-theory and dynamics I. Ann. Math. 124, 531–569 (1986) · Zbl 0653.58035 · doi:10.2307/2007092
[21] Farrell, T., Jones, L.: Compact negatively curved manifolds are rigid (announcement) · Zbl 0676.53047
[22] Hsiang, W.C., Shaneson, J.: Fake Tori. In: Cantrell, J.C., Edwards, C.H. (eds.) Topology of Manifolds. Chicago: Markham 1970, pp. 18–51
[23] Illman, S.: Whitehead torsion and group actions. Ann. Acad. Sci. Fenn., Ser. A I. Mathematica vol. 588, 1974 · Zbl 0303.57006
[24] Milnor, J.: Whitehead torsion. Bull. Am. Math. Soc. 72, 358–426 (1966) · Zbl 0147.23104 · doi:10.1090/S0002-9904-1966-11484-2
[25] Quinn, F.: Ends of Maps II. Invent. Math. 68, 353–424 (1982) · Zbl 0533.57008 · doi:10.1007/BF01389410
[26] Quinn, F.: Applications of topology with control. In: Proceedings of the 1986 International Congress of Mathematics, vol. 1, American Mathematical Society, Providence, 1987, pp. 588–602 · Zbl 0673.57017
[27] Quinn, F.: Homotopically Stratified Sets. J. Am. Math. Soc. 1, 441–499 (1988) · Zbl 0655.57010 · doi:10.1090/S0894-0347-1988-0928266-2
[28] Quinn, F.: Geometric algebra and ends of maps. Lecture notes of CBMS conference lectures at the University of Notre Dame, August 1984 (unpublished)
[29] Rothenberg, M.: Torsion Invariants and finite transformation groups, Proc. of Symp. in Pure Math. vol. XXXII, part 2: Algebraic and Geometric Topology, pp. 267–311 · Zbl 0426.57013
[30] Shaneson, J.: Wall’s surgery obstruction groups for G x Z. Ann. Math. 90, 296–334 (1969) · Zbl 0182.57303 · doi:10.2307/1970726
[31] Steinberger, M.: The equivariant topological s-cobordism theorem. Invent. Math. 91, 61–104 (1988) · Zbl 0646.57022 · doi:10.1007/BF01404913
[32] Steinberger, M., West, J.: Equivariant h-cobordisms and finiteness obstructions. Bull. Am. Math. Soc. 12, 217–220 (1985) · Zbl 0572.57021 · doi:10.1090/S0273-0979-1985-15351-0
[33] Steinberger, M., West, J.: Approximation by equivariant homeomorphisms. Trans. Am. Math. Soc. 302, 297–317 (1987) · Zbl 0643.57019 · doi:10.1090/S0002-9947-1987-0887511-8
[34] Steinberger, M., West, J.: Controlled finiteness is the obstruction to equivariant handle decomposition (to appear)
[35] Wall, C.T.C.: Surgery on Compact Manifolds. New York: Academic Press 1970 · Zbl 0219.57024
[36] Weinberger, S.: Personal Communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.