Fast symmetric additive covariance smoothing. (English) Zbl 1469.62031

Summary: A fast bivariate smoothing approach for symmetric surfaces is proposed that has a wide range of applications. It is shown how it can be applied to estimate the covariance function in longitudinal data as well as multiple additive covariances in functional data with complex correlation structures. The proposed symmetric smoother can handle (possibly noisy) data sampled on a common, dense grid as well as irregularly or sparsely sampled data. Estimation is based on bivariate penalized spline smoothing using a mixed model representation and the symmetry is used to reduce computation time compared to the usual non-symmetric smoothers. The application of the approach in functional principal component analysis for very general functional linear mixed models is outlined and its practical value is demonstrated in two applications. The approach is evaluated in extensive simulations. Documented open source software is provided that implements the fast symmetric bivariate smoother building on established algorithms for additive models.


62-08 Computational methods for problems pertaining to statistics
62H25 Factor analysis and principal components; correspondence analysis
62R10 Functional data analysis
Full Text: DOI arXiv


[1] Besse, P.; Ramsay, J. O., Principal components analysis of sampled functions, Psychometrika, 51, 2, 285-311, (1986) · Zbl 0623.62048
[2] Cederbaum, J., 2016. sparseFLMM: Functional linear mixed models for irregularly or sparsely sampled data, R package version 0.1.0. Available at https://CRAN.R-project.org/package=sparseFLMM.
[3] Cederbaum, J.; Pouplier, M.; Hoole, P.; Greven, S., Functional linear mixed models for irregularly or sparsely sampled data, Stat. Model., 16, 1, 67-88, (2016)
[4] Descary, M.-H., Panaretos, V.M., 2016. Functional Data Analysis by Matrix Completion, arXiv preprint: arXiv:1609.00834v1. (in press).
[5] Di, C.-Z.; Crainiceanu, C. M.; Caffo, B. S.; Punjabi, N. M., Multilevel functional principal component analysis, Ann. Appl. Stat., 3, 1, 458-488, (2009) · Zbl 1160.62061
[6] Di, C.-Z.; Crainiceanu, C. M.; Jank, W. S., Multilevel sparse functional principal component analysis, Statistics, 3, 1, 126-143, (2014)
[7] Eilers, P. H.; Marx, B. D., Multivariate calibration with temperature interaction using two-dimensional penalized signal regression, Chemometr. Intell. Lab. Syst., 66, 2, 159-174, (2003)
[8] Fan, J.; Huang, T.; Li, R., Analysis of longitudinal data with semiparametric estimation of covariance function, J. Amer. Statist. Assoc., 102, 478, 632-641, (2007) · Zbl 1172.62323
[9] Faraway, J. J., Regression analysis for a functional response, Technometrics, 39, 3, 254-261, (1997) · Zbl 0891.62027
[10] Greven, S.; Crainiceanu, C. M.; Caffo, B.; Reich, D., Longitudinal functional principal component analysis, Electron. J. Stat., 4, 1022-1054, (2010) · Zbl 1329.62334
[11] Hall, P.; Müller, H.; Yao, F., Modelling sparse generalized longitudinal observations with latent Gaussian processes, J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.), 70, 4, 703-723, (2008) · Zbl 05563365
[12] Huang, L., Scheipl, F., Goldsmith, J., Gellar, J., Harezlak, J., McLean, M.W., Swihart, B., Xiao, L., Crainiceanu, C., Reiss, P., 2016. refund: Regression with Functional Data, R package version 0.1-14. Available at https://CRAN.R-project.org/package=refund.
[13] Isserlis, L., On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika, 12, 1-2, 134-139, (1918)
[14] James, G. M.; Hastie, T. J., Functional linear discriminant analysis for irregularly sampled curves, J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.), 63, 3, 533-550, (2001) · Zbl 0989.62036
[15] James, G. M.; Hastie, T. J.; Sugar, C. A., Principal component models for sparse functional data, Biometrika, 87, 3, 587-602, (2000) · Zbl 0962.62056
[16] Karhunen, K., Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A.1, Math.-Phys., 37, 1-79, (1947) · Zbl 0030.16502
[17] Kauermann, G.; Wegener, M., Functional variance estimation using penalized splines with principal component analysis, Stat. Comput., 21, 2, 159-171, (2011)
[18] Krivobokova, T.; Kauermann, G., A note on penalized spline smoothing with correlated errors, J. Amer. Statist. Assoc., 102, 480, 1328-1337, (2007) · Zbl 1333.62018
[19] Leurgans, S. E.; Moyeed, R. A.; Silverman, B. W., Canonical correlation analysis when the data are curves, J. Roy. Statist. Soc. Ser. B (Statist. Methodol.), 55, 3, 725-740, (1993) · Zbl 0803.62049
[20] Loève, M., Fonctions aléatoires du second ordre, La Rev. Sci., 84, 195-206, (1946)
[21] Mercer, J., Functions of positive and negative type, and their connection with the theory of integral equations, Philos. Trans. Roy. Soc. Lond. Ser. A (Statist. Soc.), 209, 441-458, 415-446, (1909) · JFM 40.0408.02
[22] Morris, J. S., Functional regression, Annu. Rev. Statist. Appl., 2, 1, 321-359, (2015)
[23] Nadarajah, S.; Pogány, T. K., On the distribution of the product of correlated normal random variables, C. R. Math., 354, 2, 201-204, (2016) · Zbl 1412.60031
[24] Patterson, H. D.; Thompson, R., Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 3, 545-554, (1971) · Zbl 0228.62046
[25] Peng, J.; Paul, D., A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data, J. Comput. Graph. Statist., 18, 4, 995-1015, (2009)
[26] Pinheiro, J. C.; Bates, D. M., (Mixed-Effects Models in S and S-PLUS, Statistics and Computing, (2000), Springer New York) · Zbl 0953.62065
[27] Pouplier, M.; Hoole, P., Articulatory and acoustic characteristics of German fricative clusters, Phonetica, 73, 1, 52-78, (2016)
[28] Ramsay, J. O.; Silverman, B. W., (Functional Data Analysis, Springer Series in Statistics, (2005), Springer New York) · Zbl 1079.62006
[29] R Core Team, R: A language and environment for statistical computing, (2016), R Foundation for Statistical Computing Vienna, Austria, URL https://www.R-project.org/
[30] Reiss, P. T.; Huang, L.; Mennes, M., Fast function-on-scalar regression with penalized basis expansions, Int. J. Biostat., 6, 1, 1-30, (2010)
[31] Reiss, P. T.; Ogden, R. T., Smoothing parameter selection for a class of semiparametric linear models, J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.), 71, 2, 505-523, (2009) · Zbl 1248.62057
[32] Scheipl, F.; Staicu, A.-M.; Greven, S., Functional additive mixed models, J. Comput. Graph. Statist., 24, 2, 477-501, (2015)
[33] Shou, H.; Zipunnikov, V.; Crainiceanu, C. M.; Greven, S., Structured functional principal component analysis, Biometrics, 71, 1, 247-257, (2015) · Zbl 1393.62099
[34] Staniswalis, J.; Lee, J., Nonparametric regression analysis of longitudinal data, J. Amer. Statist. Assoc., 93, 444, 1403-1404, (1998) · Zbl 1064.62522
[35] Tai, W., Regularized Estimation of Covariance Matrices for Longitudinal Data Through Smoothing and Shrinkage, (2009), Columbia University, (Ph.D. thesis)
[36] Wood, S. N., Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 1, 3-36, (2011)
[37] Wu, W. B.; Pourahmadi, M., Nonparametric estimation of large covariance matrices of longitudinal data, Biometrika, 90, 4, 831-844, (2003) · Zbl 1436.62347
[38] Xiao, L., Li, C., Checkley, W., Crainiceanu, C., 2016. A face: Fast Covariance Estimation for Sparse Functional Data, R package version 0.1-1. Available at https://CRAN.R-project.org/package=face.
[39] Xiao, L.; Li, C.; Checkley, W.; Crainiceanu, C. M., Fast covariance estimation for sparse functional data, Stat. Comput., (2017), (in press)
[40] Xiao, L.; Zipunnikov, V.; Ruppert, D.; Crainiceanu, C. M., Fast covariance estimation for high-dimensional functional data, Stat. Comput., 26, 1, 409-421, (2016) · Zbl 1342.62094
[41] Yao, F.; Müller, H.-G.; Clifford, A. J.; Dueker, S. R.; Follett, J.; Lin, Y.; Buchholz, B. A.; Vogel, J. S., Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate, Biometrics, 59, 3, 676-685, (2003) · Zbl 1210.62076
[42] Yao, F.; Müller, H.-G.; Wang, J.-L., Functional data analysis for sparse longitudinal data, J. Amer. Statist. Assoc., 100, 470, 577-590, (2005) · Zbl 1117.62451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.