zbMATH — the first resource for mathematics

An efficient optimization of Hll method for the second generation of Intel Xeon Phi processor. (English) Zbl 1442.85001
Summary: In this paper, a new approach to vectorization of algorithms of computational fluid dynamics to simulate the dynamics of astrophysical objects is presented. A co-design of a computational model, from the formulation of equations to software tools, is described. The code performance is analyzed. A speed of 245 gigaflops on Intel Xeon Phi 7250 accelerator and 302 gigaflops on Intel Xeon Phi 7290 accelerator is reached. The code developed is used to solve a problem of interaction of different astrophysical objects such as galaxies, gas clouds, stars clusters.

85-04 Software, source code, etc. for problems pertaining to astronomy and astrophysics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
85-10 Mathematical modeling or simulation for problems pertaining to astronomy and astrophysics
85A05 Galactic and stellar dynamics
Full Text: DOI
[1] Schive, H.; Tsai, Y.; Chiueh, T., GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics, Astrophys. J., 186, 457-484, (2010)
[2] Kulikov, I., GPUPEGAS: A new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies, Astrophys. J. Suppl. Ser., 214, 12, (2014)
[3] Kulikov, I. M.; Chernykh, I. G.; Snytnikov, A. V.; Glinskiy, B. M.; Tutukovm, A. V., Astrophi: A code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers, Comput. Phys. Commun., 186, 71-80, (2015)
[4] Schneider, E.; Robertson, B., Cholla: a new massively parallel hydrodynamics code for astrophysical simulation, Astrophys. J. Suppl. Ser., 217, 24, (2015)
[5] Benitez-Llambay, P.; Masset, F., FARGO3D: a new GPU-oriented MHD code, Astrophys. J. Suppl. Ser., 223, 11, (2016)
[6] Pekkilaa, J.; Vaisalab, M.; Kapylac, M.; Kapylad, P.; Anjum, O., Methods for compressible fluid simulation on GPUs using high-order finite differences, Comput. Phys. Commun., 217, 11-22, (2017)
[7] Griffiths, M.; Fedun, V.; Erdelyi, R., A fast MHD code for gravitationally stratified media using graphical processing units: SMAUG, J. Astrophys. Astron., 36, 197-223, (2015)
[8] Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O‘Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W., WOMBAT: A scalable and high-performance astrophysical magnetohydrodynamics code, Astrophys. J. Suppl. Ser., 228, 23, (2017)
[9] Surmin, I.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B., Particlein-cell laser-plasma simulation on xeon phi coprocessors, Comput. Phys. Commun., 202, 204-210, (2016)
[10] Needham, P.; Bhuiyan, A.; Walker, E., Extension of the AMBER molecular dynamics software to intel‘s many integrated core (MIC) architecture, Comput. Phys. Commun., 201, 95-105, (2016)
[11] Brown, W. M.; Carrillo, J.-M. Y.; Gavhane, N.; Thakkar, F. M., Optimizing legacy molecular dynamics software with directive-based offload, Comput. Phys. Commun., 195, 95-101, (2015)
[12] Bernaschia, M.; Bissona, M.; Salvadore, F., Multi-Kepler GPU vs. multi-intel MIC for spin systems simulations, Comput. Phys. Commun., 185, 2495-2503, (2014)
[13] Nishiura, D.; Furuichi, M.; Sakaguchi, H., Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing, Comput. Phys. Commun., 194, 18-32, (2015)
[14] Hadade, I.; Mare, L., Modern multicore and manycore architectures: modelling, optimisation and benchmarking a multiblock CFD code, Comput. Phys. Commun., 205, 32-47, (2016)
[15] Kulikov, I.; Chernykh, I.; Tutukov, A., A new hydrodynamic model for numerical simulation of interacting galaxies on intel xeon phi supercomputers, J. Phys.: Conf. Ser., 719, 012006, (2016)
[16] Glinsky, B.; Kulikov, I.; Chernykh, I., The co-design of astrophysical code for massively parallel supercomputers, Algorithms and Architectures for Parallel Processing: ICA3PP 2016, 10049, 342-353, (2017)
[17] Capabilities of IntelBR AVX-512 in IntelBR XeonBR Scalable Processors (Skylake). https://colfaxresearch.com/skl-avx512/.
[18] Balsara, D.; Spicer, D., Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys., 148, 133-148, (1999) · Zbl 0930.76050
[19] Ryu, D.; Ostriker, J.; Kang, H.; Cen, R., A cosmological hydrodynamic code based on the total variation diminishing scheme, Astrophys. J., 414, 1-19, (1993)
[20] Springel, V.; Hernquist, L., Cosmological smoothed particle hydrodynamics simulations: the entropy equation, Mon. Not. Roy. Astron. Soc., 333, 649-664, (2002)
[21] Godunov, S.; Kulikov, I., Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee, Comput.Math. Math. Phys., 54, 1012-1024, (2014) · Zbl 1313.35238
[22] Kulikov, I.; Vorobyov, E., Using the ppmlapproach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows, J. Comput. Phys., 317, 318-346, (2016) · Zbl 1349.76350
[23] Harten, A.; Lax, P. D., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM J. Appl.Math., 25, 35-61, (1983) · Zbl 0565.65051
[24] Ziegler, U., Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code, Astron. Astrophys., 435, 385-395, (2005)
[25] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337-364, (2002)
[26] Stone, J.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., Athena: A new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 137-177, (2008)
[27] Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A., PLUTO: a numerical code for computational astrophysics, Astrophys. J. Suppl. Ser., 170, 228-242, (2007)
[28] Lora-Clavijo, F.; Cruz-Osorio, A.; Guzman, F., CAFE: a new relativistic MHD code, Astrophys. J. Suppl. Ser., 218, 24, (2015)
[29] Holst, B., CRASH: a block-adaptive-mesh code for radiative shock hydrodynamics— implementation and verification, Astrophys. J. Suppl. Ser., 194, 23, (2011)
[30] Kappeli, R.; Whitehouse, S.; Scheidegger, S.; Pen, U.-L.; Liebendorfer, M., FISH: a three-dimensional parallel magnetohydrodynamics code for astrophysical applications, Astrophys. J. Suppl. Ser., 195, 20, (2011)
[31] Cardall, C.; Budiardja, R.; Endeve, E.; Mezzacappa, A., Genasis: general astrophysical simulation system. I. refinable mesh and nonrelativistic hydrodynamics, Astrophys. J. Suppl. Ser., 210, 17, (2014)
[32] Jaffe, Y. L.; Smith, R.; Candlish, G.; Poggianti, B. M.; Sheen, Y.-K.; Verheijen, M. A. W., BUDHIES II: A phase-space view of HI gas stripping and star-formation quenching in cluster galaxies, Mon. Not. Roy. Astron. Soc., 448, 1715-1728, (2015)
[33] Vollmer, B.; Cayatte, V.; Balkowski, C.; Duschl, W. J., Ram pressure stripping and galaxy orbits: the case of the virgo cluster, Astrophys. J., 561, 708-726, (2001)
[34] Cayatte, V.; Kotanyi, C.; Balkowski, C.; Gorkom, J. H., A very large array survey of neutral hydrogen in virgo cluster spirals. 3: surface density profiles of the gas, Astron. J., 107, 1003-1017, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.