×

zbMATH — the first resource for mathematics

A defect-deferred correction method for fluid-fluid interaction. (English) Zbl 06921233

MSC:
65B05 Extrapolation to the limit, deferred corrections
86A05 Hydrology, hydrography, oceanography
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
76M10 Finite element methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Software:
FreeFem++; POP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Aggul, J. Connors, D. Erkmen, and A. Labovsky, A Defect-Deferred Correction Method for Fluid-Fluid Interaction: Full Version, Technical Report, Michigan Technological University, 2017. · Zbl 06921233
[2] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Volume I, Springer Tracts in Natural Philosophy, Springer-Verlag, 1994.
[3] O. Axelsson and W. Layton, Optimal Interior Estimates for the Defect-Correction, Finite Element Approach to \textup2-D Convection-Diffusion Problems, ICMA Report 88-116, University of Pittsburgh, 1988.
[4] W. Layton, H. K. Lee, and J. Peterson, A defect-correction method for the incompressible Navier–Stokes equations, Appl. Math. Comput., 129 (2002), pp. 1–19. · Zbl 1074.76033
[5] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. 140, Academic Press, 2003.
[6] J.-W. Bao, J. M. Wilczak, J.-K. Choi, and L. H. Kantha, Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development, Monthly Weather Rev., 128 (2000), pp. 2190–2210.
[7] G. Bellon, A. H. Sobel, and J. Vialard, Ocean-atmosphere coupling in the monsoon intraseasonal oscillation: A simple model study, J. Climate, 21 (2008), pp. 5254–5270.
[8] D. Bresch and J. Koko, Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids, Int. J. Appl. Math. Comput. Sci., 16 (2006), pp. 419–429. · Zbl 1119.35346
[9] K. Böhmer, P. W. Hemker, and H. J. Stetter, The defect correction approach, in Defect Correction Methods. Theory and Applications, K. Böhmer and H. J. Stetter, eds., Springer-Verlag, 1984, pp. 1–32.
[10] C. L. Brossier, V. Ducrocq, and H. Giordani, Effects of the air-sea coupling time frequency on the ocean response during Mediterranean intense events, Ocean Dynam., 59 (2009), pp. 539–549.
[11] F. O. Bryan, B. G. Kauffman, W. G. Large, and P. R. Gent, The NCAR CESM Flux Coupler, Tech. Report NCAR/TN-424+STR, National Center for Atmosphere Research, 1996.
[12] R. B. Neale et al., Description of the NCAR Community Atmosphere Model (CAM 5.0), Tech. Note NCAR/TN-486+ STR, National Center for Atmosphere Research, 2010.
[13] J. M. Connors, J. S. Howell, and W. J. Layton, Partitioned time stepping for a parabolic two domain problem, SIAM J. Numer. Anal., 47 (2009), pp. 3526–3549, . · Zbl 1204.65120
[14] J. M. Connors, J. S. Howell, and W. J. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM J. Numer. Anal., 50 (2012), pp. 1297–1319, . · Zbl 1457.65102
[15] J. Connors and B. Ganis, Stability of algorithms for a two domain natural convection problem and observed model uncertainty, Comput. Geosci., 15 (2011), pp. 509–527. · Zbl 1254.86009
[16] S. D. Nicholls and S. G. Decker, Impact of coupling an ocean model to WRF nor’easter simulations, Monthly Weather Rev., 143 (2015), pp. 4997–5016.
[17] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT, 40 (2000), pp. 241–266. · Zbl 0959.65084
[18] V. J. Ervin and H. K. Lee, Defect correction method for viscoelastic fluid flows at high Weissenberg number, Numer. Methods Partial Differential Equations, 22 (2006), pp. 145–164. · Zbl 1080.76037
[19] F. Lemarié, E. Blayo, and L. Debreu, Analysis of ocean-atmosphere coupling algorithms: Consistency and stability, Procedia Comput. Sci., 51 (2015), pp. 2066–2075.
[20] F. Lemarié, P. Marchesiello, L. Debreu, and E. Blayo, Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method: Example of Tropical Cyclone Erica, Doctoral dissertation, INRIA Grenoble, INRIA, 2014.
[21] R. Frank and W. Ueberhuber, Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations, BIT, 17 (1977), pp. 146–159. · Zbl 0364.65053
[22] F. Hecht, A. LeHyaric, and O. Pironneau, Freefem++ version 2.24-1, 2008, .
[23] J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem, part \textupIV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), pp. 353–384, . · Zbl 0694.76014
[24] D. A. Randall, R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi, and K. E. Taylor, Climate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., Cambridge University Press, 2007.
[25] M. Jochum, G. Danabasoglu, M. Holland, Y.-O. Kwon, and W. G. Large, Ocean viscosity and climate, J. Geophys. Res., 113 (2008), C06017.
[26] A. Labovsky, A defect correction method for the evolutionary convection diffusion problem with increased time accuracy, Comput. Methods Appl. Math., 9 (2009), pp. 154–164. · Zbl 1404.65120
[27] A. Labovsky, A defect correction method for the time-dependent Navier-Stokes equations, Numer. Methods Partial Differential Equations, 25 (2008), pp. 1–25.
[28] W. G. Large, J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing: A review and a model with a nonlocal boundary layer, Rev. Geophys., 32 (1994), pp. 363–403.
[29] J.-L. Lions, R. Temam, and S. Wang, Models of the coupled atmosphere and ocean (CAO I), Comput. Mech. Adv., 1 (1993), pp. 5–54. · Zbl 0805.76011
[30] J.-L. Lions, R. Temam, and S. Wang, Numerical analysis of the coupled atmosphere ocean models (CAO II), Comput. Mech. Adv., 1 (1993), pp. 55–119. · Zbl 0805.76052
[31] M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., 1 (2003), pp. 471–500. · Zbl 1088.65556
[32] M. L. Minion, Semi-implicit projection methods for incompressible flow based on spectral deferred corrections, Appl. Numer. Math., 48 (2004), pp. 369–387. · Zbl 1035.76040
[33] M. L. Minion, Semi-implicit projection methods for ordinary differential equations, Commun. Math. Sci., 1 (2003), pp. 471–500. · Zbl 1088.65556
[34] P. A. Mooney, D. O. Gill, F. J. Mulligan, and C. L. Bruyère, Hurricane simulation using different representations of atmosphere-ocean interaction: The case of Irene, Atmospher. Sci. Lett., 17 (2016), pp. 415–421.
[35] J. Nelson, R. He, J. C. Warner, and J. Bane, Air-sea interactions during strong winter extratropical storms, Ocean Dynam., 64 (2014), pp. 1233–1246.
[36] N. Perlin, E. D. Skyllingstad, R. M. Samelson, and P. L. Barbour, Numerical simulation of air-sea coupling during coastal upwelling, J. Phys. Oceanography, 37 (2007), pp. 2081–2093.
[37] R. Smith et al., The Parallel Ocean Program (POP) Reference Manual, Tech. Report LAUR-01853, 2010, pp. 1–140.
[38] A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred correction methods for problems of reactive flows, J. Comput. Phys., 189 (2003), pp. 651–675. · Zbl 1061.76053
[39] M. Gunzburger and A. Labovsky, High accuracy method for turbulent flow problems, Math. Models Methods Appl. Sci., 22 (2012), 1250005, . · Zbl 1437.76039
[40] H. J. Stetter, The defect correction principle and discretization methods, Numer. Math., 29 (1978), pp. 425–443. · Zbl 0362.65052
[41] M. Aggul and A. Labovsky, A high accuracy minimally invasive regularization technique for Navier-Stokes equations at high Reynolds number, Numer. Methods Partial Differential Equations, 33 (2017), pp. 814–839. · Zbl 1397.76058
[42] D. Erkmen and A. Labovsky, Defect-deferred correction method for the two-domain convection-dominated convection-diffusion problem, J. Math. Anal. Appl., 450 (2017), pp. 180–196. · Zbl 1381.76164
[43] B. Wang and X. Xie, Coupled modes of the warm pool climate system. Part 1: The role of air-sea interaction in maintaining Madden-Julian Oscillation, J. Climate, 11 (1998), pp. 2116–2135.
[44] W. L. Washington and C. L. Parkinson, An Introduction to Three-Dimensional Climate Modeling, 2nd ed., University Science Books, Sausalito, CA, 2005. · Zbl 0655.76003
[45] R. M. Yablonsky and I. Ginis, Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts, Monthly Weather Rev., 137 (2009), pp. 4410–4419.
[46] Y. Zhang, Y. Hou, and L. Shan, Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem, SIAM J. Numer. Anal., 54 (2016), pp. 2833–2867, . · Zbl 1381.76209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.