×

Infinite order quantum-gravitational correlations. (English) Zbl 1393.83016


MSC:

83C45 Quantization of the gravitational field
81T17 Renormalization group methods applied to problems in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Weinberg, S.; Hawking, S. W.; Israel, W., Ultraviolet divergences in quantum theories of gravitation, General Relativity: an Einstein Centenary Survey, 790-831, (1979), Cambridge: Cambridge University Press, Cambridge
[2] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90-94, (1993)
[3] Morris, T. R., The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A, 9, 2411-2450, (1994) · Zbl 0985.81604
[4] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971-985, (1998)
[5] Falkenberg, S.; Odintsov, S. D., Gauge dependence of the effective average action in Einstein gravity, Int. J. Mod. Phys. A, 13, 607-623, (1998) · Zbl 0921.53047
[6] Souma, W., Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys., 102, 181-195, (1999)
[7] Lauscher, O.; Reuter, M., Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D, 65, (2002) · Zbl 0993.83012
[8] Lauscher, O.; Reuter, M., Is quantum Einstein gravity nonperturbatively renormalizable?, Class. Quantum Grav., 19, 483-492, (2002) · Zbl 0993.83012
[9] Reuter, M.; Saueressig, F., Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation, Phys. Rev. D, 65, (2002)
[10] Litim, D. F., Fixed points of quantum gravity, Phys. Rev. Lett., 92, (2004) · Zbl 1267.83040
[11] Lauscher, O.; Reuter, M., Fractal spacetime structure in asymptotically safe gravity, J. High Energy Phys., JHEP10(2005), 050, (2005)
[12] Reuter, M.; Schwindt, J-M, A minimal length from the cutoff modes in asymptotically safe quantum gravity, J. High Energy Phys., JHEP01(2006), 070, (2006)
[13] Niedermaier, M.; Reuter, M., The asymptotic safety scenario in quantum gravity, Living Rev. Relativ., 9, 5-173, (2006) · Zbl 1255.83056
[14] Groh, K.; Saueressig, F., Ghost wave-function renormalization in asymptotically safe quantum gravity, J. Phys. A: Math. Theor., 43, (2010) · Zbl 1197.83051
[15] Benedetti, D.; Groh, K.; Machado, P. F.; Saueressig, F., The universal RG machine, J. High Energy Phys., JHEP06(2011), 079, (2011) · Zbl 1298.83042
[16] Manrique, E.; Rechenberger, S.; Saueressig, F., Asymptotically safe Lorentzian gravity, Phys. Rev. Lett., 106, (2011)
[17] Reuter, M.; Saueressig, F., Quantum Einstein gravity, New J. Phys., 14, (2012) · Zbl 1055.83015
[18] Harst, U.; Reuter, M., The ‘Tetrad only’ theory space: nonperturbative renormalization flow and asymptotic safety, J. High Energy Phys., JHEP05(2012), 005, (2012) · Zbl 1348.81334
[19] Litim, D.; Satz, A., Limit cycles and quantum gravity, (2012)
[20] Nink, A.; Reuter, M., On quantum gravity, asymptotic safety, and paramagnetic dominance, Int. J. Mod. Phys. D, 22, 1330008, (2013)
[21] Rechenberger, S.; Saueressig, F., A functional renormalization group equation for foliated spacetimes, J. High Energy Phys., JHEP03(2013), 010, (2013) · Zbl 1342.83258
[22] Nink, A., Field parametrization dependence in asymptotically safe quantum gravity, Phys. Rev. D, 91, (2015)
[23] Gies, H.; Knorr, B.; Lippoldt, S., Generalized parametrization dependence in quantum gravity, Phys. Rev. D, 92, (2015)
[24] Falls, K., On the renormalisation of Newton’s constant, Phys. Rev. D, 92, (2015)
[25] Falls, K., Critical scaling in quantum gravity from the renormalisation group, (2015)
[26] Lauscher, O.; Reuter, M., Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D, 66, (2002) · Zbl 0993.83012
[27] Codello, A.; Percacci, R., Fixed points of higher derivative gravity, Phys. Rev. Lett., 97, (2006) · Zbl 1228.83091
[28] Benedetti, D.; Machado, P. F.; Saueressig, F., Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A, 24, 2233-2241, (2009) · Zbl 1175.83030
[29] Groh, K.; Rechenberger, S.; Saueressig, F.; Zanusso, O., Higher derivative gravity from the universal renormalization group machine, PoS, 134, PoS(EPS-HEP2011)124, (2011)
[30] Rechenberger, S.; Saueressig, F., The R2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D, 86, (2012)
[31] Ohta, N.; Percacci, R., Higher derivative gravity and asymptotic safety in diverse dimensions, Class. Quantum Grav., 31, (2014) · Zbl 1287.83040
[32] Machado, P. F.; Saueressig, F., On the renormalization group flow of f(R)-gravity, Phys. Rev. D, 77, (2008)
[33] Codello, A.; Percacci, R.; Rahmede, C., Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A, 23, 143-150, (2008)
[34] Bonanno, A.; Contillo, A.; Percacci, R., Inflationary solutions in asymptotically safe f(R) theories, Class. Quantum Grav., 28, (2011) · Zbl 1221.83035
[35] Demmel, M.; Saueressig, F.; Zanusso, O., Fixed-functionals of three-dimensional quantum Einstein gravity, J. High Energy Phys., JHEP11(2012), 131, (2012)
[36] Dietz, J. A.; Morris, T. R., Asymptotic safety in the f(R) approximation, J. High Energy Phys., JHEP01(2013), 108, (2013) · Zbl 1342.81339
[37] Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C., A bootstrap towards asymptotic safety, (2013)
[38] Dietz, J. A.; Morris, T. R., Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety, J. High Energy Phys., JHEP07(2013), 064, (2013) · Zbl 1342.83080
[39] Falls, K.; Litim, D. F.; Nikolakopoulos, K.; Rahmede, C., Further evidence for asymptotic safety of quantum gravity, Phys. Rev. D, 93, (2016)
[40] Demmel, M.; Saueressig, F.; Zanusso, O., RG flows of quantum Einstein gravity in the linear-geometric approximation, Ann. Phys., 359, 141-165, (2015) · Zbl 1343.83015
[41] Demmel, M.; Saueressig, F.; Zanusso, O., RG flows of quantum Einstein gravity on maximally symmetric spaces, J. High Energy Phys., JHEP06(2014), 026, (2014) · Zbl 1333.83017
[42] Eichhorn, A., The Renormalization Group flow of unimodular f(R) gravity, J. High Energy Phys., JHEP04(2015), 096, (2015)
[43] Demmel, M.; Saueressig, F.; Zanusso, O., A proper fixed functional for four-dimensional quantum Einstein gravity, J. High Energy Phys., JHEP08(2015), 113, (2015) · Zbl 1388.83105
[44] Ohta, N.; Percacci, R.; Vacca, G. P., Flow equation for \(f(R)\) gravity and some of its exact solutions, Phys. Rev. D, 92, (2015)
[45] Ohta, N.; Percacci, R., Ultraviolet fixed points in conformal gravity and general quadratic theories, Class. Quantum Grav., 33, (2016) · Zbl 1332.83092
[46] Ohta, N.; Percacci, R.; Vacca, G. P., Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization, Eur. Phys. J. C, 76, 46, (2016)
[47] Falls, K.; Litim, D. F.; Nikolakopoulos, K.; Rahmede, C., On de Sitter solutions in asymptotically safe \(f(R)\) theories, (2016)
[48] Falls, K.; Ohta, N., Renormalization group Equation for \(f(R)\) gravity on hyperbolic spaces, Phys. Rev. D, 94, (2016)
[49] Morris, T. R., Large curvature and background scale independence in single-metric approximations to asymptotic safety, J. High Energy Phys., JHEP11(2016), 160, (2016) · Zbl 1390.83068
[50] Christiansen, N., Four-derivative quantum gravity beyond perturbation theory, (2016)
[51] Gonzalez-Martin, S.; Morris, T. R.; Slade, Z. H., Asymptotic solutions in asymptotic safety, Phys. Rev. D, 95, (2017)
[52] Hamada, Y.; Yamada, M., Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system, J. High Energy Phys., JHEP08(2017), 070, (2017) · Zbl 1381.83033
[53] Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I., Regulator dependence of fixed points in quantum Einstein gravity with R2 truncation, Class. Quantum Grav., 35, (2018) · Zbl 1386.83066
[54] Gies, H.; Knorr, B.; Lippoldt, S.; Saueressig, F., Gravitational two-loop counterterm is asymptotically safe, Phys. Rev. Lett., 116, (2016)
[55] Nink, A.; Reuter, M., The unitary conformal field theory behind 2D asymptotic safety, J. High Energy Phys., JHEP02(2016), 167, (2016) · Zbl 1388.83135
[56] Becker, D.; Ripken, C.; Saueressig, F., On avoiding Ostrogradski instabilities within asymptotic safety, J. High Energ. Phys., JHEP12(2017), 121, (2017) · Zbl 1383.83025
[57] Biemans, J.; Platania, A.; Saueressig, F., Quantum gravity on foliated spacetimes: asymptotically safe and sound, Phys. Rev. D, 95, (2017)
[58] Biemans, J.; Platania, A.; Saueressig, F., Renormalization group fixed points of foliated gravity-matter systems, J. High Energy Phys., JHEP05(2017), 093, (2017) · Zbl 1380.83088
[59] Houthoff, W. B.; Kurov, A.; Saueressig, F., Impact of topology in foliated quantum Einstein gravity, Eur. Phys. J. C, 77, 491, (2017)
[60] Percacci, R.; Perini, D., Constraints on matter from asymptotic safety, Phys. Rev. D, 67, (2003)
[61] Percacci, R.; Perini, D., Asymptotic safety of gravity coupled to matter, Phys. Rev. D, 68, (2003)
[62] Zanusso, O.; Zambelli, L.; Vacca, G. P.; Percacci, R., Gravitational corrections to Yukawa systems, Phys. Lett. B, 689, 90-94, (2010)
[63] Daum, J-E; Harst, U.; Reuter, M., Running gauge coupling in asymptotically safe quantum gravity, J. High Energy Phys., JHEP01(2010), 084, (2010) · Zbl 1269.83029
[64] Narain, G.; Percacci, R., Renormalization group flow in scalar-tensor theories. I, Class. Quantum Grav., 27, (2010) · Zbl 1189.83078
[65] Manrique, E.; Reuter, M.; Saueressig, F., Matter induced bimetric actions for gravity, Ann. Phys., 326, 440-462, (2011) · Zbl 1210.83017
[66] Vacca, G. P.; Zanusso, O., Asymptotic safety in Einstein gravity and scalar-Fermion matter, Phys. Rev. Lett., 105, (2010)
[67] Harst, U.; Reuter, M., QED coupled to QEG, J. High Energy Phys., JHEP05(2011), 119, (2011) · Zbl 1296.83026
[68] Eichhorn, A.; Gies, H., Light fermions in quantum gravity, New J.Phys., 13, (2011)
[69] Folkerts, S.; Litim, D. F.; Pawlowski, J. M., Asymptotic freedom of Yang–Mills theory with gravity, Phys. Lett. B, 709, 234-241, (2012)
[70] Dona, P.; Percacci, R., Functional renormalization with fermions and tetrads, Phys. Rev. D, 87, (2013)
[71] Dobrich, B.; Eichhorn, A., Can we see quantum gravity? Photons in the asymptotic-safety scenario, J. High Energy Phys., JHEP06(2012), 156, (2012)
[72] Eichhorn, A., Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev. D, 86, (2012)
[73] Donà, P.; Eichhorn, A.; Percacci, R., Matter matters in asymptotically safe quantum gravity, Phys. Rev. D, 89, (2014)
[74] Henz, T.; Pawlowski, J. M.; Rodigast, A.; Wetterich, C., Dilaton quantum gravity, Phys. Lett. B, 727, 298-302, (2013) · Zbl 1331.81216
[75] Eichhorn, A.; Scherer, M. M., Planck scale, Higgs mass, and scalar dark matter, Phys. Rev. D, 90, (2014)
[76] Percacci, R.; Vacca, G. P., Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C, 75, 188, (2015)
[77] Borchardt, J.; Knorr, B., Global solutions of functional fixed point equations via pseudospectral methods, Phys. Rev. D, 91, (2015)
[78] Donà, P.; Eichhorn, A.; Labus, P.; Percacci, R., Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev. D, 93, (2016)
[79] Labus, P.; Percacci, R.; Vacca, G. P., Asymptotic safety in \(O(N)\) scalar models coupled to gravity, Phys. Lett. B, 753, 274-281, (2016) · Zbl 1367.83074
[80] Meibohm, J.; Pawlowski, J. M.; Reichert, M., Asymptotic safety of gravity-matter systems, Phys. Rev. D, 93, (2016)
[81] Eichhorn, A.; Held, A.; Pawlowski, J. M., Quantum-gravity effects on a Higgs–Yukawa model, Phys. Rev. D, 94, (2016)
[82] Meibohm, J.; Pawlowski, J. M., Chiral fermions in asymptotically safe quantum gravity, Eur. Phys. J. C, 76, 285, (2016)
[83] Eichhorn, A.; Lippoldt, S., Quantum gravity and standard-model-like fermions, Phys. Lett. B, 767, 142-146, (2017)
[84] Henz, T.; Pawlowski, J. M.; Wetterich, C., Scaling solutions for dilaton quantum gravity, Phys. Lett. B, 769, 105-110, (2017) · Zbl 1370.81199
[85] Christiansen, N.; Eichhorn, A., An asymptotically safe solution to the U(1) triviality problem, Phys. Lett. B, 770, 154-160, (2017)
[86] Christiansen, N.; Eichhorn, A.; Held, A., Is scale-invariance in gauge-Yukawa systems compatible with the graviton?, Phys. Rev. D, 96, (2017)
[87] Eichhorn, A.; Held, A., Viability of quantum-gravity induced ultraviolet completions for matter, Phys. Rev. D, 96, (2017)
[88] Eichhorn, A.; Held, A., Top mass from asymptotic safety, Phys. Lett. B, 777, 217-221, (2018)
[89] Wetterich, C., Graviton fluctuations erase the cosmological constant, Phys. Lett. B, 773, 6-19, (2017) · Zbl 1378.83025
[90] Eichhorn, A.; Versteegen, F., Upper bound on the Abelian gauge coupling from asymptotic safety, J. High Energ. Phys., JHEP01(2018), 030, (2018) · Zbl 1384.83015
[91] Eichhorn, A.; Lippoldt, S.; Skrinjar, V., Nonminimal hints for asymptotic safety, Phys. Rev. D, 97, (2018)
[92] Christiansen, N.; Litim, D. F.; Pawlowski, J. M.; Reichert, M., One force to rule them all: asymptotic safety of gravity with matter, (2017)
[93] Litim, D. F.; Pawlowski, J. M., Renormalization group flows for gauge theories in axial gauges, J. High Energy Phys., JHEP09(2002), 049, (2002)
[94] Bridle, I. H.; Dietz, J. A.; Morris, T. R., The local potential approximation in the background field formalism, J. High Energy Phys., JHEP03(2014), 093, (2014)
[95] Pawlowski, J. M., Geometrical effective action and Wilsonian flows, (2003)
[96] Pawlowski, J. M., Aspects of the functional renormalisation group, Ann. Phys., 322, 2831-2915, (2007) · Zbl 1132.81041
[97] Manrique, E.; Reuter, M., Bimetric truncations for quantum Einstein gravity and asymptotic safety, Ann. Phys., 325, 785-815, (2010) · Zbl 1186.83060
[98] Donkin, I.; Pawlowski, J. M., The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, (2012)
[99] Dietz, J. A.; Morris, T. R., Background independent exact renormalization group for conformally reduced gravity, J. High Energy Phys., JHEP04(2015), 118, (2015) · Zbl 1388.83106
[100] Safari, M., Splitting ward identity, Eur. Phys. J. C, 76, 201, (2016)
[101] Labus, P.; Morris, T. R.; Slade, Z. H., Background independence in a background dependent renormalization group, Phys. Rev. D, 94, (2016)
[102] Morris, T. R.; Preston, A. W H., Manifestly diffeomorphism invariant classical exact renormalization group, J. High Energy Phys., JHEP06(2016), 012, (2016) · Zbl 1388.83131
[103] Safari, M.; Vacca, G. P., Covariant and single-field effective action with the background-field formalism, Phys. Rev. D, 96, (2017)
[104] Safari, M.; Vacca, G. P., Covariant and background independent functional RG flow for the effective average action, J. High Energy Phys., JHEP11(2016), 139, (2016) · Zbl 1390.81375
[105] Wetterich, C., Gauge invariant flow equation, (2016) · Zbl 1390.81357
[106] Percacci, R.; Vacca, G. P., The background scale Ward identity in quantum gravity, Eur. Phys. J. C, 77, 52, (2017)
[107] Ohta, N., Background scale independence in quantum gravity, PTEP, 2017, (2017)
[108] Nieto, C. M.; Percacci, R.; Skrinjar, V., Split Weyl transformations in quantum gravity, Phys. Rev. D, 96, (2017)
[109] Christiansen, N.; Litim, D. F.; Pawlowski, J. M.; Rodigast, A., Fixed points and infrared completion of quantum gravity, Phys. Lett. B, 728, 114-117, (2014) · Zbl 1377.83030
[110] Codello, A.; D’Odorico, G.; Pagani, C., Consistent closure of renormalization group flow equations in quantum gravity, Phys. Rev. D, 89, (2014)
[111] Christiansen, N.; Knorr, B.; Pawlowski, J. M.; Rodigast, A., Global flows in quantum gravity, Phys. Rev. D, 93, (2016)
[112] Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J. M.; Reichert, M., Local quantum gravity, Phys. Rev. D, 92, (2015)
[113] Denz, T.; Pawlowski, J. M.; Reichert, M., Towards apparent convergence in asymptotically safe quantum gravity, (2016)
[114] Knorr, B.; Lippoldt, S., Correlation functions on a curved background, Phys. Rev. D, 96, (2017)
[115] Christiansen, N.; Falls, K.; Pawlowski, J. M.; Reichert, M., Curvature dependence of quantum gravity, Phys. Rev. D, 97, (2018)
[116] Manrique, E.; Reuter, M.; Saueressig, F., Bimetric renormalization group flows in quantum Einstein gravity, Ann. Phys., 326, 463-485, (2011) · Zbl 1210.83018
[117] Becker, D.; Reuter, M., En route to background independence: broken split-symmetry, and how to restore it with bi-metric average actions, Ann. Phys., 350, 225-301, (2014) · Zbl 1344.83024
[118] Becker, D.; Reuter, M., Propagating gravitons versus ‘dark matter’ in asymptotically safe quantum gravity, J. High Energy Phys., JHEP12(2014), 025, (2014)
[119] Wetterich, C., Gauge symmetry from decoupling, Nucl. Phys. B, 915, 135-167, (2017) · Zbl 1354.81039
[120] Demmel, M.; Nink, A., Connections and geodesics in the space of metrics, Phys. Rev. D, 92, (2015)
[121] Ohta, N.; Percacci, R.; Pereira, A. D., Gauges and functional measures in quantum gravity I: Einstein theory, J. High Energy Phys., JHEP06(2016), 115, (2016) · Zbl 1388.83136
[122] Kawai, H.; Kitazawa, Y.; Ninomiya, M., Quantum gravity in (2  +  epsilon)-dimensions, Prog. Theor. Phys. Suppl., 114, 149-174, (1993)
[123] Kawai, H.; Kitazawa, Y.; Ninomiya, M., Scaling exponents in quantum gravity near two-dimensions, Nucl. Phys. B, 393, 280-300, (1993) · Zbl 1245.81115
[124] Kawai, H.; Kitazawa, Y.; Ninomiya, M., Ultraviolet stable fixed point and scaling relations in (2  +  epsilon)-dimensional quantum gravity, Nucl. Phys. B, 404, 684-716, (1993) · Zbl 1009.81524
[125] Kawai, H.; Kitazawa, Y.; Ninomiya, M., Renormalizability of quantum gravity near two-dimensions, Nucl. Phys. B, 467, 313-331, (1996) · Zbl 1002.81519
[126] Aida, T.; Kitazawa, Y.; Kawai, H.; Ninomiya, M., Conformal invariance and renormalization group in quantum gravity near two-dimensions, Nucl. Phys. B, 427, 158-180, (1994) · Zbl 1049.81618
[127] Manrique, E.; Reuter, M., Bare action and regularized functional integral of asymptotically safe quantum gravity, Phys. Rev. D, 79, (2009)
[128] Manrique, E.; Reuter, M., Bare versus effective fixed point action in asymptotic safety: the reconstruction problem, PoS C, LAQG08, 001, (2011)
[129] Morris, T. R.; Slade, Z. H., Solutions to the reconstruction problem in asymptotic safety, J. High Energy Phys., JHEP11(2015), 094, (2015) · Zbl 1388.83132
[130] Reuter, M., Effective average actions and nonperturbative evolution equations, (1996)
[131] Percacci, R., Asymptotic Safety, (2007) · Zbl 1206.83004
[132] Nagy, S., Lectures on renormalization and asymptotic safety, Ann. Phys., 350, 310-346, (2014) · Zbl 1344.81002
[133] Reuter, M.; Weyer, H., Background independence and asymptotic safety in conformally reduced gravity, Phys. Rev. D, 79, (2009)
[134] Reuter, M.; Weyer, H., Conformal sector of quantum Einstein gravity in the local potential approximation: non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev. D, 80, (2009)
[135] Machado, P. F.; Percacci, R., Conformally reduced quantum gravity revisited, Phys. Rev. D, 80, (2009)
[136] Bonanno, A.; Guarnieri, F., Universality and symmetry breaking in conformally reduced quantum gravity, Phys. Rev. D, 86, (2012)
[137] Dietz, J. A.; Morris, T. R.; Slade, Z. H., Fixed point structure of the conformal factor field in quantum gravity, Phys. Rev. D, 94, (2016)
[138] Litim, D. F.; Pawlowski, J. M., Flow equations for Yang–Mills theories in general axial gauges, Phys. Lett. B, 435, 181-188, (1998)
[139] ‘xAct: Efficient tensor computer algebra for Mathematica’, (2002)
[140] Brizuela, D.; Martin-Garcia, J. M.; Mena Marugan, G. A., xPert: computer algebra for metric perturbation theory, Gen. Relativ. Gravit., 41, 2415-2431, (2009) · Zbl 1176.83004
[141] Martín-García, J. M., xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun., 179, 597-603, (2008) · Zbl 1197.15002
[142] Martín-García, J. M.; Portugal, R.; Manssur, L. R U., The Invar tensor package, Comput. Phys. Commun., 177, 640-648, (2007) · Zbl 1196.15006
[143] Martín-García, J. M.; Yllanes, D.; Portugal, R., The Invar tensor package: differential invariants of Riemann, Comput. Phys. Commun., 179, 586-590, (2008) · Zbl 1197.15001
[144] Nutma, T., xTras: a field-theory inspired xAct package for mathematica, Comput. Phys. Commun., 185, 1719-1738, (2014) · Zbl 1348.70003
[145] Litim, D. F., Optimized renormalization group flows, Phys. Rev. D, 64, (2001)
[146] Litim, D. F., Critical exponents from optimized renormalization group flows, Nucl. Phys. B, 631, 128-158, (2002) · Zbl 0995.81074
[147] Borchardt, J.; Knorr, B., Solving functional flow equations with pseudo-spectral methods, Phys. Rev. D, 94, (2016)
[148] Heilmann, M.; Hellwig, T.; Knorr, B.; Ansorg, M.; Wipf, A., Convergence of derivative expansion in supersymmetric functional RG flows, J. High Energy Phys., JHEP02(2015), 109, (2015)
[149] Borchardt, J.; Gies, H.; Sondenheimer, R., Global flow of the Higgs potential in a Yukawa model, Eur. Phys. J. C, 76, 472, (2016)
[150] Borchardt, J.; Eichhorn, A., Universal behavior of coupled order parameters below three dimensions, Phys. Rev. E, 94, (2016)
[151] Knorr, B., Ising and Gross–Neveu model in next-to-leading order, Phys. Rev. B, 94, (2016)
[152] Knorr, B., Critical (Chiral) Heisenberg model with the functional renormalisation group, Phys. Rev. B, 97, (2018)
[153] Ambjorn, J.; Loll, R., Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B, 536, 407-434, (1998) · Zbl 0940.83004
[154] Ambjorn, J.; Jurkiewicz, J.; Loll, R., Spectral dimension of the universe, Phys. Rev. Lett., 95, (2005) · Zbl 1247.83243
[155] Ambjorn, J.; Jurkiewicz, J.; Loll, R., Quantum gravity, or the art of building spacetime, (2006) · Zbl 1195.83002
[156] Benedetti, D.; Henson, J., Spectral geometry as a probe of quantum spacetime, Phys. Rev. D, 80, (2009)
[157] Anderson, C.; Carlip, S. J.; Cooperman, J. H.; Horava, P.; Kommu, R. K.; Zulkowski, P. R., Quantizing Horava–Lifshitz gravity via causal dynamical triangulations, Phys. Rev. D, 85, (2012)
[158] Ambjorn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R., A Second-order phase transition in CDT, Phys. Rev. Lett., 107, (2011)
[159] Laiho, J.; Coumbe, D., Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett., 107, (2011)
[160] Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R., Nonperturbative quantum gravity, Phys. Rept., 519, 127-210, (2012)
[161] Jordan, S.; Loll, R., Causal dynamical triangulations without preferred foliation, Phys. Lett. B, 724, 155-159, (2013) · Zbl 1331.83064
[162] Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R.; Ashtekar, A.; Petkov, V., Quantum gravity via causal dynamical triangulations, Springer Handbook of Spacetime, 723-741, (2014), Dordrecht: Springer, Dordrecht
[163] Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R., Causal dynamical triangulations and the search for a theory of quantum gravity, Int. J. Mod. Phys. D, 22, 1330019, (2013)
[164] Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Kreienbuehl, A.; Loll, R., Renormalization group flow in CDT, Class. Quantum Grav., 31, (2014) · Zbl 1297.81133
[165] Cooperman, J. H., Making the case for causal dynamical triangulations, Found. Phys., (2015)
[166] Ambjorn, J.; Gizbert-Studnicki, J.; Goerlich, A.; Jurkiewicz, J.; Klitgaard, N.; Loll, R., Characteristics of the new phase in CDT, Eur. Phys. J. C, 77, 152, (2017)
[167] Glaser, L.; Sotiriou, T. P.; Weinfurtner, S., Extrinsic curvature in two-dimensional causal dynamical triangulation, Phys. Rev. D, 94, (2016)
[168] Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T., Lattice quantum gravity and asymptotic safety, Phys. Rev. D, 96, (2017)
[169] Ambjorn, J.; Coumbe, D.; Gizbert-Studnicki, J.; Gorlich, A.; Jurkiewicz, J., New higher-order transition in causal dynamical triangulations, Phys. Rev. D, 95, (2017)
[170] Ambjorn, J.; Gizbert-Studnicki, J.; Goerlich, A.; Grosvenor, K.; Jurkiewicz, J., Four-dimensional CDT with toroidal topology, Nucl. Phys. B, 922, 226-246, (2017) · Zbl 1373.83075
[171] Glaser, L.; Loll, R., CDT and Cosmology, C. R. Phys., 18, 265-274, (2017)
[172] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R., Space-time as a causal set, Phys. Rev. Lett., 59, 521-524, (1987)
[173] Sorkin, R. D., Space-time and causal sets, (1990)
[174] Sorkin, R. D., Causal sets: discrete gravity, 305-327, (2002)
[175] Surya, S., Evidence for a phase transition in 2D causal set quantum gravity, Class. Quantum Grav., 29, (2012) · Zbl 1246.83083
[176] Surya, S., Directions in causal set quantum gravity, (2011)
[177] Glaser, L.; Surya, S., Towards a definition of locality in a manifoldlike causal set, Phys. Rev. D, 88, (2013)
[178] Glaser, L.; Surya, S., The Hartle–Hawking wave function in 2D causal set quantum gravity, Class. Quantum Grav., 33, (2016) · Zbl 1338.83131
[179] Eichhorn, A.; Mizera, S.; Surya, S., Echoes of asymptotic silence in causal set quantum gravity, Class. Quantum Grav., 34, (2017) · Zbl 1371.83069
[180] Glaser, L.; O’Connor, D.; Surya, S., Finite size scaling in 2d causal set quantum gravity, Class. Quantum Grav., 35, (2018) · Zbl 1386.83063
[181] Eichhorn, A., Towards coarse graining of discrete Lorentzian quantum gravity, Class. Quantum Grav., 35, (2018) · Zbl 1386.83060
[182] Hamber, H. W., Vacuum condensate picture of quantum gravity, (2017)
[183] Knorr, B., Asymptotic safety in QFT: from quantum gravity to graphene, PhD Thesis, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.