×

The phase transition in the ultrametric ensemble and local stability of Dyson Brownian motion. (English) Zbl 1409.60025

Summary: We study the ultrametric random matrix ensemble, whose independent entries have variances decaying exponentially in the metric induced by the tree topology on \(\mathbb{N} \), and map out the entire localization regime in terms of eigenfunction localization and Poisson statistics. Our results complement existing works on complete delocalization and random matrix universality, thereby proving the existence of a phase transition in this model. In the simpler case of the Rosenzweig-Porter model, the analysis yields a complete characterization of the transition in the local statistics. The proofs are based on the flow of the resolvents of matrices with a random diagonal component under Dyson Brownian motion, for which we establish submicroscopic stability results for short times. These results go beyond norm-based continuity arguments for Dyson Brownian motion and complement the existing analysis after the local equilibration time.

MSC:

60B20 Random matrices (probabilistic aspects)
60J65 Brownian motion
15B52 Random matrices (algebraic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] M. Aizenman and S. Warzel, Random operators: Disorder effects on quantum spectra and dynamics, Graduate Studies in Mathematics, vol. 168, American Mathematical Society, Providence, RI, 2015. · Zbl 1333.82001
[2] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. · Zbl 1184.15023
[3] L. Benigni, Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices, Preprint available at arXiv:1711.07103, 2017.
[4] P. Bourgade and H.-T. Yau, The eigenvector moment flow and local quantum unique ergodicity, Comm. Math. Phys. 350 (2017), no. 1, 231–278. · Zbl 1379.58014
[5] P. Bourgade, L. Erdős, H.-T. Yau, and J. Yin, Universality for a class of random band matrices, Adv. Theor. Math. Phys. 21 (2017), no. 3, 739–800. · Zbl 1381.15029
[6] A. Bovier, The density of states in the Anderson model at weak disorder: a renormalization group analysis of the hierarchical model, J. Statist. Phys. 59 (1990), no. 3-4, 745–779. · Zbl 0718.60121
[7] G. Casati, L. Molinari, and F. Izrailev, Scaling properties of band random matrices, Phys. Rev. Lett. 64 (1990), 1851–1854. · Zbl 1050.82500
[8] J.-M. Combes, F. Germinet, and A. Klein, Generalized eigenvalue-counting estimates for the Anderson model, J. Stat. Phys. 135 (2009), no. 2, 201–216. · Zbl 1168.82016
[9] M. Disertori, H. Pinson, and T. Spencer, Density of states for random band matrices, Comm. Math. Phys. 232 (2002), no. 1, 83–124. · Zbl 1019.15014
[10] M. Duits and K. Johansson, On mesoscopic equilibrium for linear statistics in Dyson’s Brownian motion, To appear in Memoirs of the American Mathematical Society (2017). · Zbl 1435.60004
[11] F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191–1198. · Zbl 0111.32703
[12] F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys. 12 (1969), no. 2, 91–107. · Zbl 1306.47082
[13] L. Erdős, Universality of Wigner random matrices: a survey of recent results, Russian Mathematical Surveys 66 (2011), no. 3, 507. · Zbl 1230.82032
[14] L. Erdős, B. Schlein, and H.-T. Yau, Universality of random matrices and local relaxation flow, Invent. Math. 185 (2011), no. 1, 75–119. · Zbl 1225.15033
[15] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, Delocalization and diffusion profile for random band matrices, Comm. Math. Phys. 323 (2013), no. 1, 367–416. · Zbl 1279.15027
[16] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, The local semicircle law for a general class of random matrices, Electron. J. Probab. 18 (2013), no. 59, 58. · Zbl 1373.15053
[17] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80 (2008), 1355–1417.
[18] D. Facoetti, P. Vivo, and G. Biroli, From non-ergodic eigenvectors to local resolvent statistics and back: A random matrix perspective, EPL (Europhysics Letters) 115 (2016), no. 4, 47003.
[19] Y. V. Fyodorov and A. D. Mirlin, Scaling properties of localization in random band matrices: A \(σ \)-model approach, Phys. Rev. Lett. 67 (1991), 2405–2409. · Zbl 0990.82529
[20] Y. V. Fyodorov, A. Ossipov, and A. Rodriguez, The Anderson localization transition and eigenfunction multifractality in an ensemble of ultrametric random matrices, Journal of Statistical Mechanics: Theory and Experiment 2009 (2009), no. 12, L12001.
[21] J. Huang and B. Landon, Local law and mesoscopic fluctuations of Dyson Brownian motion for general \(β \) and potential, arXiv:1612.06306 (2017).
[22] S. Kotani, Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, Random matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 277–286.
[23] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. Amini, A random matrix model with localization and ergodic transitions, New Journal of Physics 17 (2015), no. 12, 122002.
[24] E. Kritchevski, Hierarchical Anderson model, Probability and mathematical physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 309–322. · Zbl 1135.47036
[25] E. Kritchevski, Spectral localization in the hierarchical Anderson model, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1431–1440 (electronic). · Zbl 1115.47036
[26] E. Kritchevski, Poisson statistics of eigenvalues in the hierarchical Anderson model, Ann. Henri Poincaré 9 (2008), no. 4, 685–709. · Zbl 1149.82017
[27] S. Kuttruf and P. Müller, Lifshits tails in the hierarchical Anderson model, Ann. Henri Poincaré 13 (2012), no. 3, 525–541. · Zbl 1276.82022
[28] B. Landon, P. Sosoe, and H.-T. Yau, Fixed energy universality for Dyson Brownian motion, Preprint available at arXiv:1609.09011, 2016. · Zbl 1417.82019
[29] B. Landon and H.-T. Yau, Convergence of Local Statistics of Dyson Brownian Motion, Comm. Math. Phys. 355 (2017), no. 3, 949–1000. · Zbl 1378.60106
[30] J. O. Lee and K. Schnelli, Local deformed semicircle law and complete delocalization for Wigner matrices with random potential, J. Math. Phys. 54 (2013), no. 10, 103504, 62. · Zbl 1288.82031
[31] N. Minami, Local fluctuation of the spectrum of a multidimensional Anderson tight binding model, Comm. Math. Phys. 177 (1996), no. 3, 709–725. · Zbl 0851.60100
[32] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman, Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices, Phys. Rev. E 54 (1996), 3221–3230.
[33] S. Molchanov, Hierarchical random matrices and operators. Application to Anderson model, Multidimensional statistical analysis and theory of random matrices (Bowling Green, OH, 1996), VSP, Utrecht, 1996, pp. 179–194. · Zbl 0887.60090
[34] N. Rosenzweig and C. E. Porter, “Repulsion of energy levels” in complex atomic spectra, Phys. Rev. 120 (1960), 1698–1714.
[35] J. Schenker, Eigenvector localization for random band matrices with power law band width, Comm. Math. Phys. 290 (2009), no. 3, 1065–1097. · Zbl 1179.82079
[36] S. Sodin, The spectral edge of some random band matrices, Ann. of Math. (2) 172 (2010), no. 3, 2223–2251. · Zbl 1210.15039
[37] P. von Soosten and S. Warzel, Non-ergodic delocalization in the Rosenzweig-Porter model, Preprint available at arXiv:1709.10313, 2017. · Zbl 1408.60012
[38] P. von Soosten and S. Warzel, Renormalization Group Analysis of the Hierarchical Anderson Model, Ann. Henri Poincaré 18 (2017), no. 6, 1919–1947. · Zbl 1380.82027
[39] F. Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), no. 1-2, 9–15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.