zbMATH — the first resource for mathematics

Experiments on individual strategy updating in iterated snowdrift game under random rematching. (English) Zbl 1405.91095
Summary: How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas.

91A90 Experimental studies
91A22 Evolutionary games
91A20 Multistage and repeated games
91A26 Rationality and learning in game theory
91E40 Memory and learning in psychology
Full Text: DOI
[1] Andreoni, J.; Croson, R., Partners versus strangers: random rematching in public goods experiments, Handbook of Experimental Economics Results, vol. 1, 776-783, (2008)
[2] Andreoni, J.; Miller, J., Rational cooperation in the finitely repeated prisoner׳s dilemma: experimental evidence, Econ. J., 103, 570-585, (1993)
[3] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 1390-1396, (1981) · Zbl 1225.92037
[4] Bo, P. D.; Fréchette, G. R., The evolution of cooperation in infinitely repeated games: experimental evidence, Am. Econ. Rev., 101, 411-429, (2011)
[5] Busemeyer, J. R.; Myung, I. J., An adaptive approach to human decision making: learning theory, decision theory, and human performance, J. Exp. Psychol. Gen., 121, 177, (1992)
[6] Caliński, T.; Harabasz, J., A dendrite method for cluster analysis, Commun. Stat.-theory and Methods, 3, 1-27, (1974) · Zbl 0273.62010
[7] Camerer, C. F.; Ho, T.-H., Experience-weighted attraction learning in coordination games: probability rules, heterogeneity, and time-variation, J. Math. Psychol., 42, 305-326, (1998) · Zbl 0926.91002
[8] Camerer, C. F.; Ho, T.-H.; Chong, J.-K., Sophisticated experience-weighted attraction learning and strategic teaching in repeated games, J. Econ. Theory, 104, 137-188, (2002) · Zbl 1015.91011
[9] Cheung, Y.-W.; Friedman, D., Individual learning in normal form games: some laboratory results, Games Econ. Behav., 19, 46-76, (1997) · Zbl 0876.90105
[10] Crawford, V. P., Adaptive dynamics in coordination games, Econometrica: Journal of the Econometric Society, 103-143, (1995) · Zbl 0827.90143
[11] Doebeli, M.; Hauert, C., Models of cooperation based on the prisoner’s dilemma and the snowdrift game, Ecol. Lett., 8, 748-766, (2005)
[12] Gale, J.; Binmore, K. G.; Samuelson, L., Learning to be imperfect: the ultimatum game, Games Econ. Behav., 8, 56-90, (1995) · Zbl 0827.90146
[13] Garapin, Alexis; Llerena, Daniel; Hollard, Michel, When a precedent of donation favors defection in the prisoner’s dilemma, Ger. Econ. Rev., 12.4, 409-421, (2011)
[14] Greenwood, G. W.; Ashlock, D., Evolutionary games and the study of cooperation: why has so little progress been made?, 2012 IEEE Congress on Evolutionary Computation, 1-8, (2012)
[15] Hartigan, J. A.; Wong, M. A., Algorithm AS 136: a k-means clustering algorithm, Appl. Stat., 100-108, (1979) · Zbl 0447.62062
[16] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643-646, (2004)
[17] Helbing, D., Microscopic foundation of stochastic game dynamical equations, 211-224, (1998), Springer, (Game Theory, Experience, Rationality) · Zbl 0978.91009
[18] Helbing, D.; Yu, W., The future of social experimenting, Proc. Natl. Acad. Sci., 107, 5265-5266, (2010)
[19] Ho, T. H.; Wang, X.; Camerer, C. F., Individual differences in EWA learning with partial payoff information, Econ. J., 118, 37-59, (2008)
[20] Hollander, Y.; Prashker, J. N., The applicability of non-cooperative game theory in transport analysis, Transportation, 33, 481-496, (2006)
[21] Homayouni, S. M.; Tang, S. H.; Motlagh, O., A genetic algorithm for optimization of integrated scheduling of cranes, vehicles, and storage platforms at automated container terminals, J. Comput. Appl. Math., 270, 545-556, (2014) · Zbl 1319.90031
[22] Hyndman, Kyle; Kraiselburd, Santiago; Watson, Noel, Coordination in games with strategic complementarities: an experiment on fixed vs. random matching, Prod. Oper. Manage., (2012)
[23] Imhof, L. A.; Fudenberg, D.; Nowak, M. A., Tit-for-tat or win-stay, lose-shift?, J. Theor. Biol., 247, 574-580, (2007)
[24] Ishibuchi, H.; Namikawa, N., Evolution of cooperative behavior in the iterated prisoner’s dilemma under random pairing in game playing, IEEE Trans. Evol. Comput., 3, 2637-2644, (2005)
[25] Jia, N.; Ma, S., Evolution of cooperation in the snowdrift game among mobile players with random-pairing and reinforcement learning, Physica A: Stat. Mech. Appl., 392, 5700-5710, (2013)
[26] Kikuchi, S.; Tominaga, D.; Arita, M.; Takahashi, K.; Tomita, M., Dynamic modeling of genetic networks using genetic algorithm and S-system, Bioinformatics, 19, 643-650, (2003)
[27] Kita, H., A merging-giveway interaction model of cars in a merging section: a game theoretic analysis, Transp. Res.: Part A: Policy Pract., 33, 305-312, (1999)
[28] Klumpp, Tilman, Finitely repeated voluntary provision of a public good, J. Public Econ. Theory, 14, 4, 547-572, (2012)
[29] Kraines, D.; Kraines, V., Pavlov and the prisoner’s dilemma, Theory Decis., 26, 47-79, (1989)
[30] Kümmerli, R.; Colliard, C.; Fiechter, N.; Petitpierre, B.; Russier, F.; Keller, L., Human cooperation in social dilemmas: comparing the snowdrift game with the prisoner’s dilemma, Proc. R. Soc. B: Biol. Sci., 274, 2965-2970, (2007)
[31] Liu, H.; Gopalkrishnan, V.; Quynh, K. T.N.; Ng, W.-K., Regression models for estimating product life cycle cost, J. Intell. Manuf., 20, 401-408, (2008)
[32] Macy, M. W.; Flache, A., Learning dynamics in social dilemmas, Proc. Natl. Acad. Sci., 99, Suppl. 3, 7229-7236, (2002) · Zbl 1355.91014
[33] Matsui, A., Best response dynamics and socially stable strategies, J. Econ. Theory, 57, 343-362, (1992) · Zbl 0773.90103
[34] Milgrom, P.; Qian, Y.; Roberts, J., Complementarities, momentum, and the evolution of modern manufacturing, Am. Econ. Rev., 81, 84-88, (1991)
[35] Milinski, M.; Wedekind, C., Working memory constrains human cooperation in the prisoner’s dilemma, Proc. Natl. Acad. Sci., 95, 13755-13758, (1998)
[36] Milligan, G. W.; Cooper, M. C., An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179, (1985)
[37] Milligan, G. W.; Cooper, M. C., A study of standardization of variables in cluster analysis, J. Classif., 5, 181-204, (1988)
[38] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639-1662, (1998)
[39] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560-1563, (2006)
[40] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829, (1992)
[41] Nowak, M. A.; Sigmund, K., The dynamics of indirect reciprocity, J. Theor. Biol., 194, 561-574, (1998)
[42] Nowak, M.; Sigmund, K., A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game, Nature, 364, 56-58, (1993)
[43] Nyarko, Y.; Schotter, A., An experimental study of belief learning using elicited beliefs, Econometrica, 70, 971-1005, (2002) · Zbl 1121.91317
[44] Ohtsuki, H., Reactive strategies in indirect reciprocity, J. Theor. Biol., 227, 299-314, (2004)
[45] Oprea, R.; Henwood, K.; Friedman, D., Separating the hawks from the doves: evidence from continuous time laboratory games, J. Econ. Theory, 146, 2206-2225, (2011) · Zbl 1229.91095
[46] Rivas, J., Cooperation, imitation and partial rematching, Games Econ. Behav., 79, 148-162, (2013) · Zbl 1281.91010
[47] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Promotion of cooperation on networks? the myopic best response case, Eur. Phys. J. B: Condens. Matter Complex Syst., 71, 587-595, (2009)
[48] Roca, C. P.; Sánchez, A.; Cuesta, J. A., Individual strategy update and emergence of cooperation in social networks, J. Math. Sociol., 36, 1-21, (2012)
[49] Roth, A. E.; Erev, I., Learning in extensive-form games: experimental data and simple dynamic models in the intermediate term, Games Econ. Behav., 8, 164-212, (1995) · Zbl 0833.90144
[50] Schlag, K. H., Why imitate, and if so, how?: a boundedly rational approach to multi-armed bandits, J. Econ. Theory, 78, 130-156, (1998) · Zbl 0895.90003
[51] Schmidt, D.; Shupp, R.; Walker, J.; Ahn, T. K.; Ostrom, E., Dilemma games: game parameters and matching protocols, J. Econ. Behav. Organ., 46, 4, 357-377, (2001)
[52] Sefton, Martin; Steinberg, Richard, Reward structures in public good experiments, J. Public Econ., 61, 2, 263-287, (1996)
[53] Souza, M. O.; Pacheco, J. M.; Santos, F. C., Evolution of cooperation under N-person snowdrift games, J. Theor. Biol., 260, 581-588, (2009)
[54] Spinelli, R.; Magagnotti, N., A tool for productivity and cost forecasting of decentralised wood chipping, For. Policy Econ., 12, 194-198, (2010)
[55] Sugden, R., The economics of rights, co-operation and welfare, (1986), Blackwell Oxford
[56] Szabó, G.; Fáth, G., Evolutionary games on graphs, Phys. Rep., 446, 97-216, (2007)
[57] Teknomo, K., 2014. K-Means Clustering Tutorials. In 〈http://people.revoledu.com/kardi/tutorial/kMean/〉 (accessed September 10, 2014).
[58] Traulsen, A.; Semmann, D.; Sommerfeld, R. D.; Krambeck, H. J.; Milinski, M., Human strategy updating in evolutionary games, Proc. Natl. Acad. Sci., 107, 2962-2963, (2010)
[59] Wang, W.-X.; Ren, J.; Chen, G.; Wang, B.-H., Memory-based snowdrift game on networks, Phys. Rev. E, 74, 056113, (2006)
[60] Wedekind, C.; Milinski, M., Human cooperation in the simultaneous and the alternating prisoner’s dilemma: pavlov versus generous tit-for-tat, Proc. Natl. Acad. Sci., 93, 2686-2689, (1996)
[61] Wilcox, N. T., Theories of learning in games and heterogeneity bias, Econometrica, 74, 1271-1292, (2006) · Zbl 1138.91013
[62] Woelfing, B.; Traulsen, A., Stochastic sampling of interaction partners versus deterministic payoff assignment, J. Theor. Biol., 257, 689-695, (2009)
[63] Xia, C.; Wang, J.; Wang, L.; Sun, S.; Sun, J.; Wang, J., Role of update dynamics in the collective cooperation on the spatial snowdrift games: beyond unconditional imitation and replicator dynamics, Chaos, Solitons Fractals, 45, 1239-1245, (2012)
[64] Xiong, W.; Conway, D.; Holman, I.; Lin, E., Evaluation of CERES-wheat simulation of wheat production in China, Agron. J., 100, 1720, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.