Caffarelli, Luis A.; Shahgholian, Henrik; Yeressian, Karen A minimization problem with free boundary related to a cooperative system. (English) Zbl 1395.35226 Duke Math. J. 167, No. 10, 1825-1882 (2018). The paper is focused on the Bernoulli-type free boundary problem: Minimize the functional \[ J(u)=\displaystyle\int_{\Omega}(|\nabla {\mathbf u}|^2+Q^2\chi_{\{|\mathbf{u}|>0\}})\,dx \] over \(H^1(\Omega;\mathbb{R}^m)\), where \(\mathbf{u}=(u_1,\ldots,u_m)\), \(\Omega\) is a bounded domain in \(\mathbb{R}^n\) and \(Q\) is a smooth enough function, under the constraint that \(\mathbf{u}=\mathbf{g}\) on \(\partial\Omega\) and the sign constraints \(u_i\geq 0\) a.e. in \(\Omega\) for \(i=1,\ldots,m\), with \(\mathbf{g}\in H^1(\Omega;\mathbb{R}^m)\) be such that \(g_i\geq 0\) a. e. in \(\Omega\) for \(i=1,\ldots,m\). The authors investigate the existence of an absolute minimizer, the general structure and initial regularity of minimers, and the optimal linear growth of minimizers near the free boundary. A preliminary local analysis of the minimizers and the free boundary is also presented. The authors prove that the noncoincidence set \(\{|\mathbf{u}|>0\}\) is locally a nontangentially accesible domain, and by using the reduction to a scalar problem, they obtain that the flatness of the free boundary implies its regularity. A Pohozaev-type identity is then proved and a Weiss-type monotonicity formula is also given, which establishes the homogeneity of blow-up limits. Finally, the authors classify all homogeneous global minimizers of the above problem, and they obtain the structure of the free boundary \(\Omega\cap\partial\{|\mathbf{u}|>0\}\) and its higher regularity close to regular points when the data of the problem is accordingly regular. Reviewer: Rodica Luca (Iaşi) Cited in 26 Documents MSC: 35R35 Free boundary problems for PDEs 35J60 Nonlinear elliptic equations Keywords:minimization; Bernoulli-type free boundary; free boundary; system; regularity × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405 [2] N. E. Aguilera, L. A. Caffarelli, and J. Spruck, An optimization problem in heat conduction, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (1987), 355-387. · Zbl 0668.49022 [3] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144. · Zbl 0449.35105 [4] H. W. Alt, L. A. Caffarelli, and A. Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (1984), 1-44. · Zbl 0554.35129 [5] H. W. Alt, L. A. Caffarelli, and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984), no. 2, 431-461. · Zbl 0844.35137 · doi:10.1090/S0002-9947-1984-0732100-6 [6] J. Andersson, Optimal regularity for the Signorini problem and its free boundary, Invent. Math. 204 (2016), 1-82. · Zbl 1339.35345 · doi:10.1007/s00222-015-0608-6 [7] J. Andersson, H. Shahgholian, N. N. Uraltseva, and G. S. Weiss, Equilibrium points of a singular cooperative system with free boundary, Adv. Math. 280 (2015), 743-771. · Zbl 1319.35306 · doi:10.1016/j.aim.2015.04.014 [8] L. A. Caffarelli, D. S. Jerison, and C. E. Kenig, “Global energy minimizers for free boundary problems and full regularity in three dimensions” in Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math. 350, Amer. Math. Soc., Providence, 2004, 83-97. · Zbl 1330.35545 [9] L. A. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc. 21 (2008), 847-862. · Zbl 1194.35138 · doi:10.1090/S0894-0347-08-00593-6 [10] M. Conti, S. Terracini, and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math. 195 (2005), 524-560. · Zbl 1126.35016 · doi:10.1016/j.aim.2004.08.006 [11] D. De Silva and D. S. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math. 635 (2009), 1-21. · Zbl 1185.35050 · doi:10.1515/CRELLE.2009.074 [12] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, revised ed., Textb. Math., CRC Press, Boca Raton, Fla., 2015. · Zbl 1310.28001 [13] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80-147. · Zbl 0514.31003 · doi:10.1016/0001-8708(82)90055-X [14] D. S. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal. 25 (2015), 1240-1257. · Zbl 1326.49078 · doi:10.1007/s00039-015-0335-6 [15] H. Jiang and F. Lin, A new type of free boundary problem with volume constraint, Comm. Partial Differential Equations 29 (2004), 821-865. · Zbl 1067.49030 · doi:10.1081/PDE-120037333 [16] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math. 83, Amer. Math. Soc., Providence, 1994. · Zbl 0812.35001 [17] D. Kinderlehrer, L. Nirenberg, and J. Spruck, Regularity in elliptic free boundary problems, J. Anal. Math. 34 (1978), 86-119. · Zbl 0402.35045 · doi:10.1007/BF02790009 [18] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, New York, 1966. · Zbl 0142.38701 [19] G. S. Weiss, Partial regularity for a minimum problem with free boundary, J. Geom. Anal. 9 (1999), 317-326. · Zbl 0960.49026 · doi:10.1007/BF02921941 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.