Design of high-order iterative methods for nonlinear systems by using weight function procedure. (English) Zbl 1433.65093

Summary: We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed methods with other schemes in the literature and test their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points.


65H10 Numerical computation of solutions to systems of equations
Full Text: DOI


[1] Iliev, A.; Kyurkchiev, N., Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis, (2010), Saarbrcken, Germany: LAP LAMBERT Academic, Saarbrcken, Germany
[2] Zhang, Y.; Huang, P., High-precision time-interval measurement techniques and methods, Progress in Astronomy, 24, 1, 1-15, (2006)
[3] He, Y.; Ding, C., Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications, The Journal of Supercomputing, 18, 3, 259-277, (2001) · Zbl 0979.68625 · doi:10.1023/a:1008153532043
[4] Weerakoon, S.; Fernando, T. G., A variant of Newton’s method with accelerated third-order convergence, Applied Mathematics Letters, 13, 8, 87-93, (2000) · Zbl 0973.65037 · doi:10.1016/s0893-96590000100-2
[5] Özban, A. Y., Some new variants of Newton’s method, Applied Mathematics Letters, 17, 6, 677-682, (2004) · Zbl 1065.65067 · doi:10.1016/s0893-96590490104-8
[6] Gerlach, J., Accelerated convergence in Newton’s method, SIAM Review, 36, 2, 272-276, (1994) · Zbl 0814.65046 · doi:10.1137/1036057
[7] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method for functions of several variables, Applied Mathematics and Computation, 183, 1, 199-208, (2006) · Zbl 1123.65042 · doi:10.1016/j.amc.2006.05.062
[8] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method using fifth-order quadrature formulas, Applied Mathematics and Computation, 190, 1, 686-698, (2007) · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
[9] Cordero, A.; Torregrosa, J. R., On interpolation variants of Newton’s method for functions of several variables, Journal of Computational and Applied Mathematics, 234, 1, 34-43, (2010) · Zbl 1201.65077 · doi:10.1016/j.cam.2009.12.002
[10] Frontini, M.; Sormani, E., Third-order methods from quadrature formulae for solving systems of nonlinear equations, Applied Mathematics and Computation, 149, 3, 771-782, (2004) · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[11] Cordero, A.; Torregrosa, J. R.; Vassileva, M. P., Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations, Applied Mathematics and Computation, 218, 23, 11496-11504, (2012) · Zbl 1278.65067 · doi:10.1016/j.amc.2012.04.081
[12] Vassileva, M. P., Métodos iterativos eficientes para la resolución de sistemas no lineales [Ph.D. thesis], (2011), Valencia, Spain: Universidad Politécnica de Valencia, Valencia, Spain
[13] Traub, J. F., Iterative Methods for the Solution of Equations, (1964), Prentice Hall · Zbl 0121.11204
[14] Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Mathematics of Computation, 20, 434-437, (1966) · Zbl 0229.65049 · doi:10.1090/s0025-5718-66-99924-8
[15] Sharma, J. R.; Guha, R. K.; Sharma, R., An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numerical Algorithms, 62, 2, 307-323, (2013) · Zbl 1283.65051 · doi:10.1007/s11075-012-9585-7
[16] Sharma, J. R.; Gupta, P., An efficient fifth order method for solving systems of nonlinear equations, Computers & Mathematics with Applications, 67, 3, 591-601, (2014) · Zbl 1350.65048 · doi:10.1016/j.camwa.2013.12.004
[17] Cordero, A.; Hueso, J. L.; Martínez, E.; Torregrosa, J. R., A modified Newton-Jarratt’s composition, Numerical Algorithms, 55, 1, 87-99, (2010) · Zbl 1251.65074 · doi:10.1007/s11075-009-9359-z
[18] Chicharro, F. I.; Cordero, A.; Torregrosa, J. R., Drawing dynamical and parameters planes of iterative families and methods, The Scientific World Journal, 2013, (2013) · doi:10.1155/2013/780153
[19] Rall, L. B., Computational Solution of Nonlinear Operator Equations, (1979), New York, NY, USA: Robert E. Krieger, New York, NY, USA · Zbl 0476.65033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.