A data mining approach for visual and analytical identification of neurorehabilitation ranges in traumatic brain injury cognitive rehabilitation. (English) Zbl 1433.92022

Summary: Traumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Cognitive rehabilitation (CR) has become the treatment of choice for cognitive impairments after TBI. It consists of hierarchically organized tasks that require repetitive use of impaired cognitive functions. One important focus for CR professionals is the number of repetitions and the type of task performed throughout treatment leading to functional recovery. However, very little research is available that quantifies the amount and type of practice. The Neurorehabilitation Range (NRR) and the Sectorized and Annotated Plane (SAP) have been introduced as a means of identifying formal operational models in order to provide therapists with decision support information for assigning the most appropriate CR plan. In this paper we present a novel methodology based on combining SAP and NRR to solve what we call the Neurorehabilitation Range Maximal Regions (NRRMR) problem and to generate analytical and visual tools enabling the automatic identification of NRR. A new SAP representation is introduced and applied to overcome the drawbacks identified with existing methods. The results obtained show patterns of response to treatment that might lead to reconsideration of some of the current clinical hypotheses.


92C50 Medical applications (general)
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI


[1] Roozenbeek, B.; Maas, A. I. R.; Menon, D. K., Changing patterns in the epidemiology of traumatic brain injury, Nature Reviews Neurology, 9, 4, 231-236, (2013)
[2] Langlois, J. A.; Sattin, R. W., Traumatic brain injury in the United States: research and programs of the Centers for Disease Control and Prevention (CDC), Journal of Head Trauma Rehabilitation, 20, 3, 187-188, (2005)
[3] Tabish, S. A.; Syed, N., Traumatic brain injury: the neglected epidemic of modern society, International Journal of Science and Research, 3, 12, (2014)
[4] Stuss, D. T.; Winocur, G.; Robertson, I. H., Cognitive Neuro-Rehabilitation: Evidence and Application, (2008), Cambridge, UK: Cambridge University Press, Cambridge, UK
[5] Wilson, B. A.; Botez, M. I., La réadaption cognitive chez les cérébro-lésés, Neuropsychologie Clinique et Neurologie du Comportement, 637-652, (1996), Montreal, Canada: Les Presses de l’Université de Montreal, Montreal, Canada
[6] Sohlberg, M. M., Cognitive Rehabilitation. An interactive Neuropsychological Approach, (2001)
[7] Nudo, R. J., Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury, Journal of Rehabilitation Medicine, 41, supplement, 7-10, (2003)
[8] Carey, J. R.; Durfee, W. K.; Bhatt, E.; Nagpal, A.; Weinstein, S. A.; Anderson, K. M.; Lewis, S. M., Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke, Neurorehabilitation and Neural Repair, 21, 3, 216-232, (2007)
[9] Wolf, S. L.; Winstein, C. J.; Miller, J. P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K. E.; Nichols-Larsen, D., Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial, Journal of the American Medical Association, 296, 17, 2095-2104, (2006)
[10] English, C. K.; Hillier, S. L.; Stiller, K. R.; Warden-Flood, A., Circuit class therapy versus individual physiotherapy sessions during inpatient stroke rehabilitation: a controlled trial, Archives of Physical Medicine and Rehabilitation, 88, 8, 955-963, (2007)
[11] Kuys, S.; Brauer, S.; Ada, L., Routine physiotherapy does not induce a cardiorespiratory training effect post-stroke, regardless of walking ability, Physiotherapy Research International, 11, 4, 219-227, (2006)
[12] García-Rudolph, A.; Gibert, K., A data mining approach to identify cognitive NeuroRehabilitation Range in Traumatic Brain Injury patients, Expert Systems with Applications, 41, 11, 5238-5251, (2014)
[13] Naamad, A.; Lee, D. T.; Hsu, W.-L., On the maximum empty rectangle problem, Discrete Applied Mathematics, 8, 3, 267-277, (1984) · Zbl 0543.68057
[14] Rughani, A. I.; Dumont, T. S. M.; Lu, Z.; Bongard, J.; Horgan, M. A.; Penar, P. L.; Tranmer, B. I., Use of an artificial neural network to predict head injury outcome, Journal of Neurosurgery, 113, 3, 585-590, (2010)
[15] Ji, S.-Y.; Smith, R.; Huynh, T.; Najarian, K., A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries, BMC Medical Informatics and Decision Making, 9, 1, article 2, (2009)
[16] Pang, B. C.; Kuralmani, V.; Joshi, R., Hybrid outcome prediction model for severe traumatic brain injury, Journal of Neurotrauma, 24, 1, 136-146, (2007)
[17] Rohling, M. L.; Faust, M. E.; Beverly, B.; Demakis, G., Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of cicerone et al.’s (2000, 2005) systematic reviews, Neuropsychology, 23, 1, 20-39, (2009)
[18] Whyte, J.; Hart, T., It’s more than a black box; it’s a Russian doll: defining rehabilitation treatments, American Journal of Physical Medicine & Rehabilitation, 82, 8, 639-652, (2003)
[19] Cicerone, K. D.; Langenbahn, D. M.; Braden, C.; Malec, J. F.; Kalmar, K.; Fraas, M.; Felicetti, T.; Laatsch, L.; Harley, J. P.; Bergquist, T.; Azulay, J.; Cantor, J.; Ashman, T., Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008, Archives of Physical Medicine and Rehabilitation, 92, 4, 519-530, (2011)
[20] Gibert, K.; García-Rudolph, A., Desarrollo de herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido, Posibilidades de Aplicación de Minería de Datos para el Descubrimiento de Conocimiento a Partir de la Práctica Clínica. Posibilidades de Aplicación de Minería de Datos para el Descubrimiento de Conocimiento a Partir de la Práctica Clínica, Informes de Evaluación de Tecnologias Sanitarias, AATRM núm. 2006/11, (2007), Barcelona, Spain: Plan Nacional para el Sistema Nacional de Salud del Ministerio de Sanidad y Consumo, Madrid, Spain; Agència d’Avaluació de Tecnologia I Recerca Mèdiques, Barcelona, Spain
[21] Serra, J.; Arcos, J. L.; Garcia-Rudolph, A.; García-Molina, A.; Roig, T.; Tormos, J. M., Cognitive prognosis of acquired brain injury patients using machine learning techniques, Proceedings of the International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE ’13), IARIA
[22] Marcano-Cedeño, A.; Chausa, P.; García, A.; Cáceres, C.; Tormos, J. M.; Gómez, E. J., Data mining applied to the cognitive rehabilitation of patients with acquired brain injury, Expert Systems with Applications, 40, 4, 1054-1060, (2013)
[23] Jagaroo, V., Neuroinformatics for Neuropsychologists, (2009), Springer
[24] Dumitrescu, A.; Jiang, M., On the largest empty axis-parallel box amidst \(n\) points, Algorithmica, 66, 2, 225-248, (2013) · Zbl 1262.68186
[25] Chazelle, B.; Drysdale, R. L.; Lee, D. T., Computing the largest empty rectangle, SIAM Journal on Computing, 15, 1, 300-315, (1986) · Zbl 0608.68059
[26] Aggarwal, A.; Suri, S., Fast algorithms for computing the largest empty rectangle, Proceedings of the 3rd Annual Symposium on Computational Geometry
[27] McKenna, M.; O’Rourke, J.; Suri, S., Finding the largest rectangle in an orthogonal polygon, Proceedings of the 23rd Annual Allerton Conference on Communication, Control and Computing
[28] Baird, H. S.; Jones, S. E.; Fortune, S. J., Image segmentation by shape-directed covers, Proceedings of the 10th International Conference on Pattern Recognition
[29] Edmonds, J.; Gryz, J.; Liang, D.; Miller, R. J., Mining for empty spaces in large data sets, Theoretical Computer Science, 296, 3, 435-452, (2003) · Zbl 1045.68041
[30] Augustine, J.; Das, S.; Maheshwari, A.; Nandy, S. C.; Roy, S.; Sarvattomananda, S., Recognizing the largest empty circle and axis-parallel rectangle in a desired location
[31] Tormos, J. M.; Garcia-Molina, A.; Garcia Rudolph, A.; Roig, T., Information and communications technology in learning development and rehabilitation, International Journal of Integrated Care, 9, (2009)
[32] Green, C. S.; Bavelier, D., Action-video-game experience alters the spatial resolution of vision, Psychological Science, 18, 1, 88-94, (2007)
[33] Lezak, M. D., Neuropsychological Assessment, (1995), New York, NY, USA: Oxford University Press, New York, NY, USA
[34] Trettin, L. J., Executive functions following traumatic brain injury: the impact of depression upon performance [Ph.D. thesis], (2007), Pacific Graduate School of Psychology
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.