Kindermann, Stefan; Papáček, Štěpán On data space selection and data processing for parameter identification in a reaction-diffusion model based on FRAP experiments. (English) Zbl 1437.92044 Abstr. Appl. Anal. 2015, Article ID 859849, 17 p. (2015). Summary: Fluorescence recovery after photobleaching (FRAP) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data (pre)processing represents an important issue. The aim of this paper is twofold. First, we formulate and solve the problem of relevant FRAP data selection. The theoretical findings are illustrated by the comparison of the results of parameter identification when the full data set was used and the case when the irrelevant data set (data with negligible impact on the confidence interval of the estimated parameters) was removed from the data space. Second, we analyze and compare two approaches of FRAP data processing. Our proposition, surprisingly for the FRAP community, claims that the data set represented by the FRAP recovery curves in form of a time series (integrated data approach commonly used by the FRAP community) leads to a larger confidence interval compared to the full (spatiotemporal) data approach. Cited in 5 Documents MSC: 92C37 Cell biology 62P10 Applications of statistics to biology and medical sciences; meta analysis Keywords:fluorescence recovery after photobleaching; data selection; data processing Software:UFO × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Mueller, F.; Mazza, D.; Stasevich, T. J.; McNally, J. G., FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?, Current Opinion in Cell Biology, 22, 3, 403-411, (2010) · doi:10.1016/j.ceb.2010.03.002 [2] Kaňa, R.; Prášil, O.; Mullineaux, C. W., Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted, FEBS Letters, 583, 4, 670-674, (2009) · doi:10.1016/j.febslet.2009.01.016 [3] Kaňa, R.; Kotabová, E.; Lukeš, M.; et al, Phycobilisome mobility and its role in the regulation of light harvesting in red algae, Plant Physiology, 165, 4, 1618-1631, (2014) · doi:10.1104/pp.114.236075 [4] Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophysical Journal, 16, 9, 1055-1069, (1976) · doi:10.1016/0002-9610(76)90409-8 [5] Ellenberg, J.; Siggia, E. D.; Moreira, J. E.; Smith, C. L.; Presley, J. F.; Worman, H. J.; Lippincott-Schwartz, J., Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis, The Journal of Cell Biology, 138, 6, 1193-1206, (1997) · doi:10.1083/jcb.138.6.1193 [6] Jönsson, P.; Jonsson, M. P.; Tegenfeldt, J. O.; Höök, F., A method improving the accuracy of fluorescence recovery after photobleaching analysis, Biophysical Journal, 95, 11, 5334-5348, (2008) · doi:10.1529/biophysj.108.134874 [7] Mullineaux, C. W.; Tobin, M. J.; Jones, G. R., Mobility of photosynthetic complexes in thylakoid membranes, Nature, 390, 6658, 421-424, (1997) · doi:10.1038/37157 [8] Seiffert, S.; Oppermann, W., Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope, Journal of Microscopy, 220, 1, 20-30, (2005) · doi:10.1111/j.1365-2818.2005.01512.x [9] Tsay, T.-T.; Jacobson, K. A., Spatial fourier analysis of video photobleaching measurements: principles and optimization, Biophysical Journal, 60, 2, 360-368, (1991) · doi:10.1016/s0006-3495(91)82061-6 [10] Irrechukwu, O. N.; Levenston, M. E., Improved estimation of solute diffusivity through numerical analysis of FRAP experiments, Cellular and Molecular Bioengineering, 2, 1, 104-117, (2009) · doi:10.1007/s12195-009-0042-1 [11] Mai, J.; Trump, S.; Ali, R.; Schiltz, R. L.; Hager, G.; Hanke, T.; Lehmann, I.; Attinger, S., Are assumptions about the model type necessary in reaction-diffusion modeling? A FRAP application, Biophysical Journal, 100, 5, 1178-1188, (2011) · doi:10.1016/j.bpj.2011.01.041 [12] Sbalzarini, I. F., Analysis, Modeling and Simulation of Diffusion Processes in Cell Biology, (2009), VDM Dr. Muller [13] Engl, H.; Hanke, M.; Neubauer, A., Regularization of Ill-Posed Problems, (1996), Dortrecht, The Netherlands: Kluwer, Dortrecht, The Netherlands · Zbl 0859.65054 [14] Kaňa, R.; Matonoha, C.; Papáček, Š.; Soukup, J.; Chleboun, J.; Segeth, K.; Šístek, J.; Vejchodský, T., On estimation of diffusion coefficient based on spatio-temporal FRAP images: an inverse ill-posed problem, Programs and Algorithms of Numerical Mathematics 16, 100-111, (2013), Academy of Sciences of the Czech Republic · Zbl 1340.65210 [15] Papáček, Š.; Kaňa, R.; Matonoha, C., Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images, Mathematical and Computer Modelling, 57, 7-8, 1907-1912, (2013) · Zbl 1305.94012 · doi:10.1016/j.mcm.2011.12.029 [16] Zadeh, K. S.; Montas, H. J.; Shirmohammadi, A., Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling, Theoretical Biology and Medical Modelling, 3, article 36, (2006) · doi:10.1186/1742-4682-3-36 [17] Lukšan, L.; Tuma, M.; Matonoha, C.; Vlček, J.; Ramešová, N.; Šiška, M.; Hartman, J., UFO 2014—interactive system for universal functional optimization, V-1191, (2014), Prague, Czech Republic: Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic [18] Kaňa, R., Mobility of photosynthetic proteins, Photosynthesis Research, 116, 2-3, 465-479, (2013) · doi:10.1007/s11120-013-9898-y [19] Cintrón-Arias, A.; Banks, H. T.; Capaldi, A.; Lloyd, A. L., A sensitivity matrix based methodology for inverse problem formulation, Journal of Inverse and Ill-posed Problems, 17, 6, 545-564, (2009) · Zbl 1179.34008 · doi:10.1515/jiip.2009.034 [20] Sadegh Zadeh, K.; Montas, H. J., A class of exact solutions for biomacromolecular diffusion-reaction in live cells, Journal of Theoretical Biology, 264, 3, 914-933, (2010) · Zbl 1406.92254 · doi:10.1016/j.jtbi.2010.03.028 [21] Sadegh Zadeh, K., A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms, Computers in Biology and Medicine, 41, 1, 24-36, (2011) · doi:10.1016/j.compbiomed.2010.11.002 [22] Bates, D. M.; Watts, D. G., Nonlinear Regression Analysis and Its Applications, (1988), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0728.62062 · doi:10.1002/9780470316757 [23] Papáček, Š.; Jablonský, J.; Matonoha, C.; Kaňa, R.; Kindermann, S.; Ortuño, F.; Rojas, I., FRAP & FLIP: two sides of the same coin?, Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (IWBBIO ’15), Granada, Spain, April 2015, 9044, 444-455, (2015), Springer [24] Papáček, Š.; Jablonský, J.; Kaňa, R.; Matonoha, C.; Kindermann, S., From data processing to experimental design and back again: a parameter identification problem based on FRAP images, Proceedings of the 17th International Conference on Digital Image Processing (ICDIP ’15) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.