×

Existence and uniqueness results for fractional differential equations with Riemann-Liouville fractional integral boundary conditions. (English) Zbl 1470.34007

Summary: We prove the existence and uniqueness of solution for fractional differential equations with Riemann-Liouville fractional integral boundary conditions. The first existence and uniqueness result is based on Banach’s contraction principle. Moreover, other existence results are also obtained by using the Krasnoselskii fixed point theorem. An example is given to illustrate the main results.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27, 3, 201-210, (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[2] Diethelm, K.; Freed, A. D.; Keil, F.; Mackens, W.; Voss, H., On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics and Molecular Properties, 217-224, (1999), Heidelberg, Germany: Springer, Heidelberg, Germany
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1092.45003
[4] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations, (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[5] Lakshmikantham, V.; Leela, S.; Devi, J. V., Theory of Fractional Dynamic Systems, (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[6] Podlubny, I., Fractional Differential Equations, (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0918.34010
[7] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033, (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[8] Blayneh, K. W., Analysis of age structured host-parasitoid model, Far East Journal of Dynamical Systems, 4, 125-145, (2002) · Zbl 1059.92050
[9] Adomian, G.; Adomian, G. E., Cellular systems and aging models, Computers & Mathematics with Applications, 11, 1–3, 283-291, (1985) · Zbl 0565.92017 · doi:10.1016/0898-1221(85)90153-1
[10] Ahmad, B.; Ntouyas, S. K., Fractional differential inclusions with fractional separated boundary conditions, Fractional Calculus and Applied Analysis, 15, 3, 362-382, (2012) · Zbl 1279.34003 · doi:10.2478/s13540-012-0027-y
[11] Ahmad, B.; Nieto, J. J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary Value Problems, 2009, (2009) · Zbl 1167.45003 · doi:10.1155/2009/708576
[12] Ahmad, B.; Nieto, J. J., Riemann-Liouville fractional integro-differential equations with frac tional nonlocal integral boundary conditions, Boundary Value Problems, 2011, article 36, (2011) · Zbl 1275.45004
[13] Benchohra, M.; Graef, J. R.; Hamani, S., Existence results for boundary value problems with non-linear fractional differential equations, Applicable Analysis, 87, 7, 851-863, (2008) · Zbl 1198.26008 · doi:10.1080/00036810802307579
[14] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, (1993), Englewood Cliffs, NJ, USA: Gordon and Breach Science Publishers, Englewood Cliffs, NJ, USA · Zbl 0818.26003
[15] Smart, D. R., Fixed Point Theorems, (1980), Cambridge University Press · Zbl 0427.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.