Okamura, Kazuki Self-similar measures for iterated function systems driven by weak contractions. (English) Zbl 1396.28018 Proc. Japan Acad., Ser. A 94, No. 4, 31-35 (2018). Summary: We show the existence and uniqueness for self-similar measures for iterated function systems driven by weak contractions. Our main idea is using the duality theorem of Kantorovich-Rubinstein and equivalent conditions for weak contractions established by Jachymski. We also show collage theorems for such iterated function systems. Cited in 3 Documents MSC: 28A80 Fractals 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. Keywords:self-similar measures; iterated function systems; weak contractions; Kantorovich-Rubinstein duality theorem PDF BibTeX XML Cite \textit{K. Okamura}, Proc. Japan Acad., Ser. A 94, No. 4, 31--35 (2018; Zbl 1396.28018) Full Text: DOI OpenURL References: [1] J. Andres and J. Fišer, Metric and topological multivalued fractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), no. 4, 1277-1289. · Zbl 1057.28003 [2] M. F. Barnsley, Existence and uniqueness of orbital measures.v1. [3] M. F. Barnsley, Superfractals, Cambridge University Press, Cambridge, 2006. [4] M. F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an inverse problem for fractals and other sets, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 7, 1975-1977. · Zbl 0613.28008 [5] F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 27-35. [6] M. Hata, On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 4, 99-102. · Zbl 0573.54033 [7] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), no. 2, 381-414. · Zbl 0608.28003 [8] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. · Zbl 0598.28011 [9] J. R. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2327-2335. · Zbl 0887.47039 [10] L. V. Kantorovič and G. Š. Rubinšteĭn, On a space of completely additive functions, Vestnik Leningrad. Univ. 13 (1958), no. 7, 52-59. [11] M. Kesseböhmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski’s question mark function, J. Number Theory 128 (2008), no. 9, 2663-2686. · Zbl 1154.28001 [12] M. A. Krasnosel’skiĭ and V. Ja. Stecenko, On the theory of concave operator equations, Sibirsk. Mat. Ž. 10 (1969), 565-572. [13] K. Leśniak, Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math. 52 (2004), no. 1, 1-8. · Zbl 1108.47048 [14] H. Minkowski, Zur Geometrie der Zahlen, in Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg, 1904), 164-173, Druck und Verlag von B. G. Teubner, Leipzig, 1905; available at https://faculty.math.illinois.edu/ reznick/Minkowski.pdf. [15] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693. · Zbl 1042.47521 [16] C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. [17] K. R. Wicks, Fractals and hyperspaces, Lecture Notes in Mathematics, 1492, Springer-Verlag, Berlin, 1991. · Zbl 0770.54048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.