Company, R.; Egorova, V. N.; Jódar, L. An efficient method for solving spread option pricing problem: numerical analysis and computing. (English) Zbl 1470.91323 Abstr. Appl. Anal. 2016, Article ID 1549492, 11 p. (2016). Summary: This paper deals with numerical analysis and computing of spread option pricing problem described by a two-spatial variables partial differential equation. Both European and American cases are treated. Taking advantage of a cross derivative removing technique, an explicit difference scheme is developed retaining the benefits of the one-dimensional finite difference method, preserving positivity, accuracy, and computational time efficiency. Numerical results illustrate the interest of the approach. MSC: 91G60 Numerical methods (including Monte Carlo methods) 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 91G20 Derivative securities (option pricing, hedging, etc.) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Carmona, R.; Durrleman, V., Pricing and hedging spread options, SIAM Review, 45, 4, 627-685, (2003) · Zbl 1033.60069 · doi:10.1137/s0036144503424798 [2] Boyle, P. P., Options: a Monte Carlo approach, Journal of Financial Economics, 4, 3, 323-338, (1977) · doi:10.1016/0304-405x(77)90005-8 [3] Joy, C.; Boyle, P. P.; Tan, K. S., Quasi-Monte Carlo methods in numerical finance, Management Science, 42, 6, 926-938, (1996) · Zbl 0880.90006 · doi:10.1287/mnsc.42.6.926 [4] Kao, W.-H.; Lyuu, Y.-D.; Wen, K.-W., The hexanomial lattice for pricing multi-asset options, Applied Mathematics and Computation, 233, 463-479, (2014) · Zbl 1335.91103 · doi:10.1016/j.amc.2014.01.173 [5] Kirk, E.; Aron, J.; Kaminski, V., Correlation in the energy markets, Managing Energy Price Risk, 71-78, (1995), London, UK: Risk Books, London, UK [6] Alexander, C.; Venkatramanan, A., Analytic approximations for spread options, ICMA Centre Discussion Papers in Finance, DP2007-11, (2007), ICMA Centre [7] Pearson, N. D., An efficient approach for pricing spread options, The Journal of Derivatives, 3, 1, 76-91, (1995) · doi:10.3905/jod.1995.407928 [8] Chiarella, C.; Ziveyi, J., Pricing American options written on two underlying assets, Quantitative Finance, 14, 3, 409-426, (2014) · Zbl 1294.91169 · doi:10.1080/14697688.2013.810811 [9] Ziveyi, J., The evaluation of early exercise exotic options [Ph.D. thesis], (2011), Sydney, Australia: University of Technology, Sydney, Australia [10] Boyle, P., A lattice framework for option pricing with two state variables, Journal of Financial and Quantitative Analysis, 23, 1, 1-12, (1988) · doi:10.2307/2331019 [11] Rubinstein, M., Return to Oz, RISK, 7, 11, 67-71, (1994) [12] Company, R.; Jódar, L.; Fakharany, M.; Casabán, M.-C., Removing the correlation term in option pricing Heston model: numerical analysis and computing, Abstract and Applied Analysis, 2013, (2013) · Zbl 1293.91188 · doi:10.1155/2013/246724 [13] Salmi, S.; Toivanen, J.; von Sydow, L., Iterative methods for pricing american options under the bates model, Procedia Computer Science, 18, 1136-1144, (2013) · doi:10.1016/j.procs.2013.05.279 [14] Toivanen, J., A componentwise splitting method for pricing american options under the bates model, Applied and Numerical Partial Differential Equations. Applied and Numerical Partial Differential Equations, Computational Methods in Applied Sciences, 15, 213-227, (2010), Springer · Zbl 1201.91207 · doi:10.1007/978-90-481-3239-3_16 [15] Zvan, R.; Forsyth, P. A.; Vetzal, K. R., Negative coefficients in two-factor option pricing models, Journal of Computational Finance, 7, 1, 37-73, (2003) · doi:10.21314/jcf.2003.096 [16] Düring, B.; Fournié, M.; Heuer, C., High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids, Journal of Computational and Applied Mathematics, 271, 247-266, (2014) · Zbl 1319.91156 · doi:10.1016/j.cam.2014.04.016 [17] in ’t Hout, K. J.; Mishra, C., Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms, Applied Numerical Mathematics, 74, 83-94, (2013) · Zbl 1302.65194 · doi:10.1016/j.apnum.2013.07.003 [18] Chiarella, C.; Kang, B.; Mayer, G. H.; Ziogas, A., The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines, International Journal of Theoretical and Applied Finance, 12, 3, 393-425, (2009) · Zbl 1178.91193 · doi:10.1142/s0219024909005270 [19] Fakharany, M.; Company, R.; Jódar, L., Positive finite difference schemes for a partial integro-differential option pricing model, Applied Mathematics and Computation, 249, 320-332, (2014) · Zbl 1338.91152 · doi:10.1016/j.amc.2014.10.064 [20] Garabedian, P. R., Partial Differential Equations, (1998), Providence, RI, USA: AMS Chelsea Publishing, Providence, RI, USA · Zbl 0913.35001 [21] Duffy, D. J., Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, (2006), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 1141.91002 · doi:10.1002/9781118673447 [22] Seydel, R. U., Tools for Computational Finance, (2006), Springer · Zbl 1140.91053 [23] Ehrhardt, M., Discrete artificial boundary conditions [Ph.D. thesis], (2001), Berlin, Germany: Technische Universitat Berlin, Berlin, Germany · Zbl 0993.65097 [24] Kangro, R.; Nicolaides, R., Far field boundary conditions for Black-Scholes equations, SIAM Journal on Numerical Analysis, 38, 4, 1357-1368, (2000) · Zbl 0990.35013 · doi:10.1137/s0036142999355921 [25] Hull, J. C., Options, Futures and Other Derivatives, (2000), Upper Saddle River, NJ, USA: Prentice-Hall, Upper Saddle River, NJ, USA · Zbl 1087.91025 [26] Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, (1985), Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0576.65089 [27] Forsyth, P. A.; Vetzal, K. R., Quadratic convergence for valuing American options using a penalty method, SIAM Journal on Scientific Computing, 23, 6, 2095-2122, (2002) · Zbl 1020.91017 · doi:10.1137/S1064827500382324 [28] Dempster, M. A. H.; Hong, S. S. G., Spread Option Valuation and the Fast Fourier Transform. Spread Option Valuation and the Fast Fourier Transform, WP 26/2000, (2000), Judge Institute of Management Studies, University of Cambridge · Zbl 1018.91022 [29] Huang, J.-Z.; Subrahmanyam, M. G.; Yu, G. G., Pricing and hedging american options: a recursive integration method, Review of Financial Studies, 9, 1, 277-300, (1996) · doi:10.1093/rfs/9.1.277 [30] Ibáñez, A.; Zapatero, F., Monte Carlo valuation of American options through computation of the optimal exercise frontier, Journal of Financial and Quantitative Analysis, 39, 2, 253-275, (2004) · doi:10.1017/s0022109000003069 [31] Surkov, V., Parallel option pricing with fourier space time-stepping method on graphics processing, Proceedings of the 1st International Workshop on Parallel and Distributed Computing in Finance (PDCoF ’08) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.