×

The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators. (English) Zbl 1470.65109

Summary: We investigate the convergence analysis of the following general inexact algorithm for approximating a zero of the sum of a cocoercive operator \(A\) and maximal monotone operators \(B\) with \(D(B) \subset H\): \(x_{n + 1} = \alpha_n f(x_n) + \gamma_n x_n + \delta_n(I + r_n B)^{- 1}(I - r_n A) x_n + e_n\), for \(n = 1,2, \ldots\), for given \(x_1\) in a real Hilbert space \(H\), where \((\alpha_n)\), \((\gamma_n)\), and \((\delta_n)\) are sequences in \((0,1)\) with \(\alpha_n + \gamma_n + \delta_n = 1\) for all \(n \geq 1\), \((e_n)\) denotes the error sequence, and \(f : H \rightarrow H\) is a contraction. The algorithm is known to converge under the following assumptions on \(\delta_n\) and \(e_n\): (i) \((\delta_n)\) is bounded below away from 0 and above away from 1 and (ii) \((e_n)\) is summable in norm. In this paper, we show that these conditions can further be relaxed to, respectively, the following: (i) \((\delta_n)\) is bounded below away from 0 and above away from 3/2 and (ii) \((e_n)\) is square summable in norm; and we still obtain strong convergence results.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eckstein, J.; Svaiter, B. F., A family of projective splitting methods for the sum of two maximal monotone operators, Mathematical Programming B, 111, 1-2, 173-199, (2008) · Zbl 1134.47048
[2] Eckstein, J.; Svaiter, B. F., General projective splitting methods for sums of maximal monotone operators, SIAM Journal on Control and Optimization, 48, 2, 787-811, (2009) · Zbl 1194.49038
[3] López, G.; Martín-Márquez, V.; Wang, F.; Xu, H.-K., Forward-backward splitting methods for accretive operators in Banach spaces, Abstract and Applied Analysis, 2012, (2012) · Zbl 1252.47043
[4] Takahashi, S.; Takahashi, W.; Toyoda, M., Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, Journal of Optimization Theory and Applications, 147, 1, 27-41, (2010) · Zbl 1208.47071
[5] Tang, G.-J.; Huang, N.-J., Strong convergence of a splitting proximal projection method for the sum of two maximal monotone operators, Operations Research Letters, 40, 5, 332-336, (2012) · Zbl 1251.90390
[6] Rockafellar, R. T., On the maximality of sums of nonlinear monotone operators, Transactions of the American Mathematical Society, 149, 75-88, (1970) · Zbl 0222.47017
[7] Passty, G. B., Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, Journal of Mathematical Analysis and Applications, 72, 2, 383-390, (1979) · Zbl 0428.47039
[8] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM Journal on Control and Optimization, 38, 2, 431-446, (2000) · Zbl 0997.90062
[9] Mercier, B., Inéquations Variationnnelles de la Mécanique. Inéquations Variationnnelles de la Mécanique, Publications Mathématiques d’Orsay 80.01, (1980), Orsay, France: Université Paris-Sud, Orsay, France · Zbl 0444.73024
[10] Gabay, D.; Fortin, M.; Glowinski, R., Applications of the method of multipliers to variational inequalities, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, 229-331, (1983), Amsterdam, The Netherlands: North-Holland Publishing, Amsterdam, The Netherlands
[11] Chen, G. H.-G., Forward-backward splitting techniques: theory and applications [Ph.D. thesis], (1994), Seattle, Wash, USA: Department of Applied Mathematics, University of Washington, Seattle, Wash, USA
[12] Martinet, B., Régularisation d’inéquations variationnelles par approximations successives, Revue Francaise d’Informatique et de Recherche Opérationnelle, 3, 154-158, (1970) · Zbl 0215.21103
[13] Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14, 5, 877-898, (1976) · Zbl 0358.90053
[14] Güler, O., On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29, 2, 403-419, (1991) · Zbl 0737.90047
[15] Boikanyo, O. A.; Moroşanu, G., Four parameter proximal point algorithms, Nonlinear Analysis: Theory, Methods & Applications, 74, 2, 544-555, (2011) · Zbl 1298.47075
[16] Kamimura, S.; Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory, 106, 2, 226-240, (2000) · Zbl 0992.47022
[17] Lehdili, N.; Moudafi, A., Combining the proximal algorithm and Tikhonov regularization, Optimization, 37, 3, 239-252, (1996) · Zbl 0863.49018
[18] Solodov, M. V.; Svaiter, B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Mathematical Programming, 87, 1, 189-202, (2000) · Zbl 0971.90062
[19] Takahashi, W., Approximating solutions of accretive operators by viscosity approximation methods in Banach spaces, Applied Functional Analysis, 225-243, (2007), Yokohama, Japan: Yokohama Publishers, Yokohama, Japan · Zbl 1165.47052
[20] Xu, H.-K., Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society. Second Series, 66, 1, 240-256, (2002) · Zbl 1013.47032
[21] Xu, H.-K., A regularization method for the proximal point algorithm, Journal of Global Optimization, 36, 1, 115-125, (2006) · Zbl 1131.90062
[22] Yao, Y.; Noor, M. A., On convergence criteria of generalized proximal point algorithms, Journal of Computational and Applied Mathematics, 217, 1, 46-55, (2008) · Zbl 1147.65049
[23] Yao, Y.; Shahzad, N., Strong convergence of a proximal point algorithm with general errors, Optimization Letters, 6, 4, 621-628, (2012) · Zbl 1280.90097
[24] Eckstein, J.; Ferris, M. C., Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control, INFORMS Journal on Computing, 10, 2, 218-235, (1998) · Zbl 1034.90531
[25] Wang, F.; Cui, H., Convergence of the generalized contraction-proximal point algorithm in a Hilbert space, Optimization, 64, 4, 709-715, (2015) · Zbl 1310.47105
[26] Tian, C.; Wang, F., The contraction-proximal point algorithm with square-summable errors, Fixed Point Theory and Applications, 2013, article 93, (2013) · Zbl 1423.47050
[27] Wang, F.; Cui, H., On the contraction-proximal point algorithms with multi-parameters, Journal of Global Optimization, 54, 3, 485-491, (2012) · Zbl 1298.47078
[28] Goebel, K.; Kirk, W. A., Topics in Metric Fixed Point Theory, 28, (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0708.47031
[29] Moroşanu, G., Nonlinear Evolution Equations and Applications. Nonlinear Evolution Equations and Applications, Mathematics and Its Applications, 26, (1988), Dordrecht, The Netherlands: Reidel, Dordrecht, The Netherlands
[30] Maingé, P.-E., Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Analysis, 16, 7-8, 899-912, (2008) · Zbl 1156.90426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.