×

Existence of general competitive equilibria: a variational approach. (English) Zbl 1470.91150

Summary: We study the existence of general competitive equilibria in economies with agents and goods in a finite number. We show that there exists a Walras competitive equilibrium in all ownership private economies such that, for all consumers, initial endowments do not contain free goods and utility functions are locally Lipschitz quasiconcave. The proof of the existence of competitive equilibria is based on variational methods by applying a theoretical existence result for Generalized Quasi Variational Inequalities.

MSC:

91B50 General equilibrium theory
49J40 Variational inequalities
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

References:

[1] Walras, L., Elements d’Economique Politique Pure, (1874), Lausanne, Switzerland: Corbaz, Lausanne, Switzerland · JFM 21.0229.03
[2] Arrow, K. J.; Debreu, G., Existence of an equilibrium for a competitive economy, Econometrica, 22, 265-290, (1954) · Zbl 0055.38007 · doi:10.2307/1907353
[3] Debreu, G., Theory of Value, (1959), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0193.20205
[4] Debreu, G., Continuity properties of paretian utility, International Economic Review, 5, 3, 285-295, (1964) · Zbl 0138.16301 · doi:10.2307/2525513
[5] Gale, D., The law of supply and demand, Mathematica Scandinavica, 3, 155-169, (1955) · Zbl 0064.39401
[6] Jofrè, A.; Rockafellar, R. T.; Wets, R., Variational inequalities and economic equilibrium, Mathematics of Operations Research, 32, 1, 32-50, (2007) · Zbl 1276.91070 · doi:10.1287/moor.1060.0233
[7] Mas-Colell, A.; Whinston, M. D.; Green, J., Microeconomic Theory, (1995), New York, NY, USA: Oxford University Press, New York, NY, USA · Zbl 1256.91002
[8] McKenzie, L. W.; Antosiewicz, H. A., Competitive equilibrium with dependent consumer preferences, Proceedings of the Second Symposium in Linear Programming
[9] Varian, H. R., Microeconomic Analysis, (1990), W. W. Norton and Company
[10] Kakutani, S., A generalization of Brouwer’s fixed point theorem, Duke Mathematical Journal, 8, 457-459, (1941) · JFM 67.0742.03 · doi:10.1215/s0012-7094-41-00838-4
[11] Arrow, K. J.; Hahn, F., General Competitive Analysis, (1971), San Francisco, Calif, USA: Holden-Day, San Francisco, Calif, USA · Zbl 0311.90001
[12] Bryant, W. D. A., General Equilibrium: Theory and Evidence, (2010), World Scientific · Zbl 1192.91003
[13] Mas-Colell, A., The Theory of General Equilibrium: A Differential Approach. The Theory of General Equilibrium: A Differential Approach, Ecconometric Society Monograph: No. 9, (2001), Cambridge University Press
[14] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, (1980), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0457.35001
[15] Lions, J.-L.; Stampacchia, G., Variational inequalities, Communications on Pure and Applied Mathematics, 20, 493-519, (1967) · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[16] Nagurney, A.; Zhao, L.; Du, D. Z.; Pardalos, P. M., A network formalism for pure exchange economic equilibria, Network Optimization Problems: Alghoritms, Complexity and Applications, 363-386, (1993), Singapore: World Scientific Press, Singapore · Zbl 0941.68504
[17] Maugeri, A.; Vitanza, C.; Cinchuluun, A.; Pardalos, P. M.; Migdalas, A.; Pitsoulis, L., Time-dependent equilibrium problems, Pareto Optimally Game Theory and Equilibria. Pareto Optimally Game Theory and Equilibria, Springer Optimization and Its Applications, 17, 249-266, (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1191.49009 · doi:10.1007/978-0-387-77247-9_10
[18] Aubin, J. P.; Frankowska, H., Set-Valued Analysis, (2009), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 1168.49014
[19] Clarke, F. H., Optimization and Nonsmooth Analysis. Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5, (1990), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0696.49002
[20] Chan, D.; Pang, J. S., The generalized quasi-variational inequality problem, Mathematics of Operations Research, 7, 2, 211-222, (1982) · Zbl 0502.90080 · doi:10.1287/moor.7.2.211
[21] Benedetti, I.; Donato, M. B.; Milasi, M., Existence for competitive equilibrium by means of generalized quasivariational inequalities, Abstract and Applied Analysis, 2013, (2013) · Zbl 1273.91290 · doi:10.1155/2013/648986
[22] Dafermos, S., Exchange price equilibria and variational inequalities, Mathematical Programming, 46, 3, 391-402, (1990) · Zbl 0709.90013 · doi:10.1007/bf01585753
[23] Cubiotti, P., An application of quasivariational inequalities to linear control systems, Journal of Optimization Theory and Applications, 89, 1, 101-113, (1996) · Zbl 0884.49006 · doi:10.1007/BF02192643
[24] Anello, G.; Donato, M. B.; Milasi, M., A quasi-variational approach to a competitive economic equilibrium problem without strong monotonicity assumption, Journal of Global Optimization, 48, 2, 279-287, (2010) · Zbl 1204.58010 · doi:10.1007/s10898-009-9492-1
[25] Anello, G.; Donato, M. B.; Milasi, M., Variational methods for equilibrium problems involving quasi-concave utility functions, Optimization and Engineering, 13, 2, 169-179, (2012) · Zbl 1293.91112 · doi:10.1007/s11081-011-9151-5
[26] Anello, G.; Rania, F., Quasi-variational analysis of a dynamic Walrasian competitive exchange economy, International Journal of Mathematical Analysis, 7, 51, 2517-2534, (2013) · doi:10.12988/ijma.2013.38207
[27] Rania, F., On a competitive economic equilibrium referred to a continuous time period, Applied Mathematical Sciences, 7, 111, 5505-5513, (2013) · doi:10.12988/ams.2013.38433
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.