×

Approximating the solution stochastic process of the random Cauchy one-dimensional heat model. (English) Zbl 1470.65153

Summary: This paper deals with the numerical solution of the random Cauchy one-dimensional heat model. We propose a random finite difference numerical scheme to construct numerical approximations to the solution stochastic process. We establish sufficient conditions in order to guarantee the consistency and stability of the proposed random numerical scheme. The theoretical results are illustrated by means of an example where reliable approximations of the mean and standard deviation to the solution stochastic process are given.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
60H25 Random operators and equations (aspects of stochastic analysis)
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

References:

[1] Lienhard, J. H.; Lienhard, J. H., A Heat Transfer Textbook, (2013), Mineola, NY, USA: Dover, Mineola, NY, USA
[2] Kreith, F.; Manglik, R. M.; Bohn, M. S., Principles of Heat Transfer, (2011), Stamford, Conn, USA: Cengage Learning, Stamford, Conn, USA
[3] Logan, J. D., Partial differential equations on bounded domains, Applied Partial Differential Equations, 121-171, (2004), Springer · Zbl 1055.35001 · doi:10.1007/978-1-4419-8879-9_4
[4] Kaviany, M., Heat Transfer Physics, (2014), New York, NY, USA: Cambridge University Press, New York, NY, USA
[5] Trim, D. W., Applied Partial Differential Equations, (1990), Boston, Mass, USA: PWS-Kent, Boston, Mass, USA
[6] Wang, L.; Zhou, X.; Wei, X., Heat Conduction: Mathematical Models and Analytical Solutions, (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1237.80002
[7] Çengel, Y. A.; Boles, M. A., Thermodynamics: An Engineering Approach, (2015), New York, NY, USA: McGraw-Hill Education, New York, NY, USA
[8] Wang, J., A model of competitive stock trading volume, Journal of Political Economy, 102, 1, 127-168, (1994) · doi:10.1086/261924
[9] Wang, D. Z., The changes of fishes fauna and protections of aboriginal fishes in the Tarim river, Arid Zone Research, 12, 3, 54-59, (1995)
[10] Wang, Y. L., Prospects of extension for propagation techniques for green cuttages in jujube, Economic Forest Researches, 9, 59-60, (2001)
[11] Givoli, D., Numerical Methods for Problems in Infinite Domains. Numerical Methods for Problems in Infinite Domains, Studies in Applied Mechanics, 33, (1992), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 0788.76001
[12] Tsynkov, S. V., Numerical solution of problems on unbounded domains. A review, Applied Numerical Mathematics, 27, 4, 465-532, (1998) · Zbl 0939.76077 · doi:10.1016/s0168-9274(98)00025-7
[13] Koleva, M. N., Numerical solution of the heat equation in unbounded domains using quasi-uniform grids, Large-Scale Scientific Computing: 5th International Conference, LSSC 2005, Sozopol, Bulgaria, June 6–10, 2005. Revised Papers. Large-Scale Scientific Computing: 5th International Conference, LSSC 2005, Sozopol, Bulgaria, June 6–10, 2005. Revised Papers, Lecture Notes in Computer Science, 3743, 509-517, (2006), Berlin, Germany: Springer, Berlin, Germany · Zbl 1142.65397 · doi:10.1007/11666806_58
[14] Han, H.; Huang, Z., A class of artificial boundary conditions for heat equation in unbounded domains, Computers and Mathematics with Applications, 43, 6-7, 889-900, (2002) · Zbl 0999.65086 · doi:10.1016/s0898-1221(01)00329-7
[15] Wu, X.; Sun, Z.-Z., Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions, Applied Numerical Mathematics, 50, 2, 261-277, (2004) · Zbl 1053.65074 · doi:10.1016/j.apnum.2004.01.001
[16] Cortés, J. C.; Sevilla-Peris, P.; Jódar, L., Analytic-numerical approximating processes of diffusion equation with data uncertainty, Computers and Mathematics with Applications, 49, 7-8, 1255-1266, (2005) · Zbl 1078.65005 · doi:10.1016/j.camwa.2004.05.015
[17] Casabán, M.-C.; Cortés, J.-C.; García-Mora, B.; Jódar, L., Analytic-numerical solution of random boundary value heat problems in a semi-infinite bar, Abstract and Applied Analysis, 2013, (2013) · Zbl 1470.65007 · doi:10.1155/2013/676372
[18] Casabán, M.-C.; Company, R.; Cortés, J.-C.; Jódar, L., Solving the random diffusion model in an infinite medium: a mean square approach, Applied Mathematical Modelling, 38, 24, 5922-5933, (2014) · Zbl 1429.60058 · doi:10.1016/j.apm.2014.04.063
[19] Soong, T. T., Random Differential Equations in Science and Engineering, (1973), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0348.60081
[20] Villafuerte, L.; Braumann, C. A.; Cortés, J.-C.; Jódar, L., Random differential operational calculus: theory and applications, Computers and Mathematics with Applications, 59, 1, 115-125, (2010) · Zbl 1189.60126 · doi:10.1016/j.camwa.2009.08.061
[21] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications, (2003), Berlin, Germany: Springer, Berlin, Germany · Zbl 1025.60026 · doi:10.1007/978-3-642-14394-6
[22] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations. Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, 23, (1992), Berlin, Germany: Springer, Berlin, Germany · Zbl 0925.65261 · doi:10.1007/978-3-662-12616-5
[23] Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T., Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, Universitext, (2010), New York, NY, USA: Springer, New York, NY, USA · Zbl 1198.60005 · doi:10.1007/978-0-387-89488-1
[24] Stein, E. M.; Shakarchi, R., Functional Analysis: Introduction to Further Topics in Analysis. Functional Analysis: Introduction to Further Topics in Analysis, Princeton Lectures in Analysis, (2011), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1235.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.